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ABSTRACT

Physically based models which describe the finite strain behavior of vulcanized
rubber are developed. Constitutive laws for elasticity and viscoelasticity are derived by
integrating over orientation space the forces due to each individual polymer chain. A
novel scheme is presented which effectively approximates thése integrals in terms of
strain and strain invariants. In addition, the details involving the implementation of such
models into a quasi-static large strain finite element formulation are provided.

In order to account for the finite extensibility of a molécular chain, Langevin
statistics is usgd to model the chain response. The classical statistical model of rubber
assﬁmes that polyrr;er chains interact only at the chemical crosslinks. It is‘ known that
" such model when fitted for uniaxial tension data cannot fit compression or equibiaxial
data. A model which incorporates the entanglement interactions of surrounding chains, in
addition to the finite extensibility of the chains, is shown to give better predictions than
the classical model. The technique used for approximating the orientation space integral
was applied to both the classical and entanglement models.

A viscoelasticity model based on the force equilibration process as described by
Doi and Edwards is developed. An assumed form for the transient force in the chain is
postulated. The resulting stress tensor is composed of an elastic and a viscoelastic portion
with the elastic stress given by the proposed entanglement model. In order to improve the
simulation of experimental data, it was found necessary to include the effect of
unattached or dangling polymer chains in the viscoelasticity model. The viscoelastic
effect of such chains is vthe manifestation of a disengagement process. This
disengagement‘ model for unattaéhed polymer chains motivated an empirical model

which was very successful in simulating the experimental results considered.
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INTRODUCTION

With increased interest in the modeling of tire performance and elastomeric
bearings and the development of mechanistic models for filled rubbers and polymer
composites it seetﬁs that physically based constitutive models for the polymer matrix
need bé considered. Such models can provide better insight into the effects small filler
particles or glass fibers may have on a polymer matrix or how the residual stresses evolve
as the rubber passes from the melt stage to the vulcanized rubber in the tire fonning
process. Rheblogists have made significant efforts in characterizing the behavior of
polymers and in particular polymer fluids. Meanwhile, the mechanics community has
been relatively unaware of the advances made in polymer science. In this work it was
intended to draw concepts from the field of rheology and use them to prévide polymer
models that would be of interest to the mechanical or structural engineer. In this context
the models would be based on a limited amount of statistical analysis and would be more
intuitive. The constitutive models presented in this work are mainly extensions of theories
given by rheologists but in a language comprehensible to an engineer.

.The Neo-Hookean ;nodel for rubber provides a simple closed form constitutive
law and in view of its simplicity gives reasonably good results. The original Langevin
statistics model outlined by Treloar (1975) is based on the same kinematics as the Neo-
Hookean model, but includes the effects of finite extensible chains. The constitutive
equation for the Langevin statistics model is given by an iﬁtegratioh over orientation
space and can not be solved in closed form. Approximations such that chains are lumped
in particular directions have been made. A series approach is used here to approximate
the constitutive law. The nature of the expansion made provides a more accurate
approximation than has been made in the past. In addition, the approximate constitutive
law is in terms of the Cauchy Greeh tensor and strain invariance, hence no explicit

calculation for the principle stretch and principle stretch axes is necessary.
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It is known that this Langevin statistical model when fitted for uniaxial tension
data cannot fit compression data. This discrepancy is seen to be severe for the data
considered in this study* . A constitutive law that could model the behavior in both
compression and tension and includes the effects of finite extensibl¢ chains was sought.
A simple form of entanglement model was generalized such that it included finite
extensible chains and fit the experimental data well. The same approiimation te.chnique‘
that was used on the classical Langevin statistics model was used to get a closed form for
the entanglement constitutive law. |

A viscoelastic constitutive law based on the force equilibration concepts given by
Doi and Edwards (1986) is proposed. In this model all the chains are assumed to be
crosslinked and the viscoelasticity is due to a reconﬁguration of chain sections after
friction forces from the surrounding polymer network have carried the chain into a non-
equilibrium position. An empirical form for the transient force in the chain is postulated.
Again, the method for approximating the orientation space integrals proved useful in
providing a closed form for the constitutive equation.

Predictions given by the force equilibration model of viscoelasticity compared to
experimental data suggested the need to consider the unattached p(_)lymer chains. A two
network theory is assumed; the network is composed of crdsslinked and uncrosslinked
chains actihg independently. Doi and Edwards (1978) reptation model is used to capture
the effects of the unattached chains whilé the elastic entanglement model is used to
capture the effects of the crosslinked chains. In this model only the unattached chains
contribute to the viscous stress while only the crosslinked chains contribute to the
elasticity. |
| The two network model suggested a form for an empirical model which was very

successful in simulating the experimental resuits considered. Perhaps, one of the biggest

* Actually 'the data for equibiaxial tension is considered here in lieu of compression. The rubber is nearly
incompressible, hence results from equibiaxial tension can be considered equivalent to uniaxial
compression after the stress is adjusted by a hydrostatic pressure.



contributions mechanistic models can make is in suggesting phenomenological forms

for constitutive equations.



1. CLASSICAL MODEL FOR RUBBER ELASTICITY
1.1 Introductidn

Many constitutive models are available for modeling rubbery polymers in the large

~ strain regime. Of them, the phenomenological Ogden's method (Ogden, 1972) seemé to be
the most proficient. These models, for the most part, are relied upon to capture the upturn
in stress vs. strain seen at very high strain levels. The upturn is often attributed to the finite
extensibility of the polymer chains although in some circumstances it is due to strain
induced crystallization depending on the type of polymer considered. In addition to purely
phenomenological methods are the so called statistical mechanics models. The Neo-

~ Hookean method wiljch relies on Gaussian statistics does ﬁot consider ﬁnité extensibility of
the molecular chains. Treloar in numerous publications (Treloar, 1975 and 1979; Jones and
Treloar, 1975; Vangerko and Treloar, 1978 etc.) , James and Guth (1943), Flory (1961)
etc. have given attention to the Langevin statistical model of the polymer which
incorporates the finite extensibility effects of deformation. But due to the complex nature of
the Langevin function and kinematics it was difﬁéult to arrive at any definitive method to
apply the Langevin statistics in a constitutive model. Most of the methods ﬁsed until
recently lumped all the chains in _lparticular orientations and solved the problems accordingly
i.e. Flory's 'tetrahedral ' model and James and Guth's ‘three chain' model. An eight chain
model has also been proposed by Arruda and Boyce (1992). The draw backs of these
models have been discussed at ciuite length. Treloar (1979) used Gauss point integration to
incorporate the contributions from all chains to get results for shear and biaxial loading
conditions.Wu and Van Der Giessen (1993) compared results from the three, and eight
chain models to the numerical integration procedure given by Treloar (1979). The
numerical integration procedure is not amenable to general boundary value problems using
for instance a finite elefnent procedure. A method which relies on a series expansion of the

integral given by Treloar is proposed and can be used to solve generalized boundary
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problems. Because of the nature of the approximation technique used, the method yields
good results for relatively high strains. The theory for rubber in this section does not
incorporate effects due to entanglements. This theory will be referred to as the "classical

theory" in contrast to the "entanglement model" presented in Section 2.
1.2 Development of the Classical Constitutive Model and Approximations

Rubber is composed of a network of long chain molecules which are connected at
junction points by chemical crosslinks. It is commonly assumed that each junction point
moves affinely and that each molecular chain vector r deforms as a material line. A typical

molecular chain is shown in Fig. 1.2.1.

1

\ A
- 1=length of statistical link
N = number of statistical links per chain
r = chain vector

r r = initial vector length of chain
Fig. 1.2.1 Typical molecular chain shown in bold along with important parameters

Based on some physical arguments as discussed in Treloar (1975),(1979) the initial chain
length is r, = YN 1. Therefore r = A r, = A YN 1 where A is the stretch of the chain vector.
Using Langevin statistics to describe the free energy in a polymer chain the

following relation is given (Treloar 1975) :

L(B) = coth(B) - 1/B (1.2.1b)
where s is the entropy, T is the temperature, L-! is the inverse Langevin function and k is
Boltzman's constant . Furthermore to calculate the total amount of free energy per unit

volume due to all chains, Eq. 1.2.1 (a) is-integrated over all possible orientations as such:



W) =n f f w(h) C(0.0)sin0d0do  (1.2.2)

00

where n is the nﬁmber of chains per unit volume* , 8 and ¢ are the spheriéal coordinates of
the current orientation of a given chain, A = A(8,¢), and C(6,9) is the orientation
distribution function (Wu andVan Der Giessen, 1993) such that C(0,9) sin 0 d6 d¢ is the
fraction of chains in a given direction.

The integral in Eq 1.2.2 is in terms of the variables (0,0) which represent the
current orientation of chains. The initial orientation of a given chain may be represented by
the spherical coordinates (©,®). The deforrned and undeformed coordinates are

interchangeable and the following trénsformations are used:

(8.0) = (B(0,30), 6(0,B30) (123 0
96.0)| 90 dp 8 %
J=] , = | S — — e — —— 2.
©) ’a(G),CI)) o waw P
dedo=JdO dd (1.2.3 ¢)

where J is jacobian. Using 1.2.2 and 1.2.3, achange of variables is made from current

orientations (6,0) to initial orientations (®,®) giving:

WO)=n f f w()) C©,0)J sin 6 d© dd (1.2.4)

Conservation of the number of chain vectors between the deformed and undeformed
configuration requires that C(0,9) sin 6 do d¢ =C(0,P) sin © dO d<D.~Using (1.23¢)
along with the assumption that the initial distribution of the chains is isotropic, i.e. C(O,P)

= 1/4r, yields C(0,0) J sin 6 d® d® = (1/41) sin® dO d®. Hence, Eq. (1.2.4) becomes,

W(K):nffw(l) Sin © gg 4o Ca.2s)

* The rubber is assumed to be incompressible, hence no distinction is made between deformed and
undeformed volume



Now the free energy in a chain w(A) is giveﬁ by 1.2.1 while the average force in the chain

is given by:

Cdw) _dwid) 1 KT h
f(A) = = =KT -1 A
=" . W1 1 W~ (1.2.6)

where use of r = A VN 1 is made. Although Eq. 1.2.6 will not be needed explicitly,

- derivatives of the free energy "w" will be necessary and the inverse Langevin function will
be necessary. There is no closed form for the inverse Langevin function. The function can
only be found by numerically solving the inverse problem of Eq. 1.2.1 (b) or by a series
representation which due to its infinite limit at A = VN, converges very .slowly at high
extensions. A highly accurate approximation was sought for the inverse Langevin function
to solve this problem.‘ The approxirhation given by Eq. 1.2.7 is proposed and is plotted in

Fig. 1.2.2 along with the numerical inverse to Eq. 1.2.1 (b).

| 3 A
L-I(L) = N
N 1- (_A,_)3 , ‘
N (1.2.7)
120.00 |
16.00 - _ -
' == == m=inverse Langevin approximation
12.00 inverse Langevin i
8.00 —
4.00 _
0.00 : ! I

1 .
0 0.2 .6 0.8 1

0.4 0
A /YN

Fig. 1.2.2 Inverse Langevin from numerical solution to Eq. 1.2.1 (b) plotted with inverse
Langevin approximation Eq. 1.2.7. Both functions go to infinity as A / YN goes to 1.



Integrating 1.2.7 gives the following approximation to Eq. 1.2.1 for the free energy

of a stretched chain :

1+wﬁ+(w¢ﬁ>2
(1-MYN Y

1+2My/N

) -3 Tan"(T)) (1.2.8)

g |
w(\) = NKT (5 In (

Substitution of 1.2.8 into 1.2.5 gives the following approximation for the total strain

energy which is not integrable analytically.

1 2 1 2 «
W(k):NnkTJj(%ln( + MY N + WyN) )--ﬁTan"( + ;Jﬁ)) Sm@d@d«p

(1-MyN ) | 4
(1.2.9)
It is clear that the three chain method of James and Guth is a Gauss point
approximation of Eq. 1.2.5 where six Gauss points are used and located on the

Lagrangian principle axes of strain. Eq. 1.2.10 illustrates James and Guth's method.

W) = % (W(Ap) + w(A2) + w(R3))

(1.2.10)
Where G; and A; are the principlé stress and principle stretch respectively. Such a method
- gives the free energy as a function of principle stretches and has the appearance of Ogden's
-method. Methods in terms of principle stress are not the most efficient to implement into a
finite element procedure. Furthérmore, as shown in Van Der Giessen (1993), Treloar |
(1979) and further on here, the three chain method is much stiffer than the exact (numerical
integration) solution to Eq. i.2.5. The unit vector for the direction cosines of the chain

vector r in the Lagrangian coordinate system is denoted M (see Fig. 1.2.3) such that

M=M;, My, M3) = (sin.(~) cos @, sin O sin P, cos O) (1.2.11)



This convention (1.2.11) will be used throughout this work. It can be shown that the

method by Arruda and Boyce results from a Gauss point integration of Eq 1.2.5 with eight
Gauss points at the spherical coordinate positions (0,9) = (54.74°, 45°), (54.74°, 135°),

(-54.74°, 45°) etc. such that the directions cosines have the following values:

(sin © cos D, sin O s.in D, cos ©) = (x IN3, = IN3, + 143)

Fig. 1.2.3 The Lagrangian principle coordinate system with spherical coordinates
(©,9) and unit vector M = (M1, My, M3) = (sin © cos ®, sin © sin P, cos O)
At this orientation A2 = MT C M =1, / 3 where C is the diagonal Green strain tensor in the
principle coordinate system. Where Ij and I are the first and second invariants defined as
suchTj = tr Cand Ip = 1/2 ( (tr CJ'- tr C2). Since the stretch A = v/T; / 3 at this
orientation, the following is the Gauss point approximation for the strain energy and

stress:

W(h) =n w1, /3) (1.2.12 a)

w1, /3) L |
- Fix F
SKL =0 T 3G, T P Pk Fie (12.12 b)

or, with w(A) given by Eq. 1.2.1 such that its derivative follows from Eq. 1.2.6, Eq. 1.12

(b) is rewritten,

L/1,73
S =nkT— (—‘35m+kaKFkL (1.2.12 ¢)



where Sk is the second Piola Kirchoff stress, p the pressure and Fgk the deformation
gradient. As shown in Wu and Van Der Giessen (1993) and further on here tt-xe eight chain
model tends to be rather soft compared to the exact solution to Eq. 1.2.2.

The solution proposed here yields Arruda and Boyce's eight chain model as a first
approximation and becomes closer to the exact solution as terms are added. The method

applies a Taylor series expansion about A2 =1} / 3 to any function of A such as Eq. 1.2.8

yielding:

W) , I 1]owy 2 L,
wd) = wiy1;/3) + A-D+5|—=| Q-+

0D | 3 2l 3

3 3
1HPwm| 2 L 5,1 Fwn) o2 s
. 3 8(7\,2)3 2 Il 3 4 ao\’z)4 3
7\.=€ A=a%

(1.2.13)
As noted before, the stretch A =/ 1; / 3 (or A2 =1; / 3) in 8 orientations of the spherical

coordinates (©,®P) of the Lagrangian principle coordinate system where the direction

cosines have the following values:
(sin © cos ®, sin © sin @, cos ©) = (£ IA3, £ 143, + IN3)

The energy w(A) could have been expanded about A = 1 but more terms would be
necessary to get good results. Now the stretch can be expressed in terms of the spherical

coordinates by the following:

7»2(@,(I>) =Mg CxL ML = ?»% sin @ éos D+ 7\.% sin © sin @ + 7»% cos ©

(1.2.14)

where My are the direction cosines, Cky, is the Green's strain tensor in the principle

coordinate system and A;? are the ith principle stretches. Dropping the error term (last term)

in 1.2.13.and substituting it into 1.2.5 gives,

10



woy=n] | |w/ 11/3>+[~—aw ED} 023+
- a(”) ;f:%
W I Pl I |sin@
2 oL )2 2 Iy 3 3 o\ )3 2 4 3 4
' A3 Mg
(1.2.15)

The only dependence on orientation possessed by Eq. 1.2. 15 is due to the A terms;
therefore, only these terms need be integrated over orientation space (unit sphere). Using

1.2.14 the following integrals are evaluated:

2 .

1 ; - . .

4nffsm®d®dd> 1 (1.2.16)
00

. 2nx® 5 s 2.

1 2 . _}»1+7\.2+7\,3_I_1

41t[ A sin®@deOdd =" 3 3 =3 . (1.2.17)
0%

2t x

#JAJ'}\,4sin®d®d(I)=1L5(3}»‘;+3x;+3xg+xfx§+}»f)u§+k§?\,§)

00

=.-115-(3 B-41) (1.2.18)

L [#smo0c0- Lot it it esateaten ot erterd

00

20 3 M) =L GR-12LL+8 ) (12.19)

Using 1.2.16 - 1.2.19 the following integral identities are evaluated:

11



2t n

4"”“ Iy sin@d® do = 0
’ o | (1.2.20)

2t n

4"” (A2 Il)zsm®d®d¢-— L@-3p)
29 (1.2.21)

2n ©

4"”“ Il)3sm@d@d¢—945 QB-9L L +2713)
5% (1.2.22)

Substituting (1.2.8) into (1.2.15), taking the appropriate derivatives and using the identities

given by (1.2.20) - (1.2.22), Eq. 1.2.15 is integrated giving:

W(I1,Iz,I3)=NnkT[ In (l +(I‘/3N)l/ 77 ‘/3N)) V3 Tan- (1 +2('l/3N) ) N

3 W (-3t ) 1(1/3N) 245 ('

I
21, - 2 27k
10(1 (v )3/2 (1= ()’ D) (21,-9 + ) (1.2.23)

Because of Eq. 1.2.20 the second term on the right hand side of (1.2.15) vanishes. If the
rubber is considered incompressible the third invariant I3 in (1.2.23) may be set equal to 1.
The second Piola Kirchoff stress is calculated for isochoric deformations by the following

" formula:

sKL—z(aW aag 1) 8y - 2aWcK-L+kaKI«‘kL (1.2.24)

Where P is the pressure and Fyj is the deformation gradient. Substituing Eq. 1.1.23 into
- Eq. 1.2.24 and taking the derivatives with respect to the invariants gives the third order

approximation for the second Piola Kirchoff stress,

12



- 1 (I /3N)

‘/3N)
S| * o e 0

(1= ()’

70((11/3N)1/2 +12 Wh)* +5 (h/m) )(21 12 P )+ 2%0 ( M)t 245 (l./3N)2)x
1

— (' H* (1= ()’
I Lo | 650k’ - 58 (i)’ L
(_1III+18ﬁ—81 ]8KL+G?511[ (1_(11/3N)3/2)3 CKL+PFkKFkL
;’ (1.2.25)

Where G=nk T and n is the numbg(r of polymer chains per unit volume. Disregarding the
third order contribution of the last erm on the right hand sides of 1.2.23 (and 1.2.15), the

second Piola K1rchoff stress is caIculated using 1.2.24 to be:

: I 3/2

-0 H?

Sg = G|—L
- |<1 *™)

‘/N) (U )3/2
( ) (‘l/3 N2 ]8KL+G5911 {(1_(13,2N)3/2)2 Cir+P Frx Fiw
(1.2.26)

Eq. 1.2.25 represents the second order approximation of the stress. The first order
approximation is merely the first term on the right hand side of 1.2.25 along with the
pressure contribution,

1
[(1 - C*'?)
Which is seen to be the same e‘xpression as that from Arruda and Boyce's method (Eq.
1.2.12) after the approximation for the Langevin function is used (1.2.7). Eq. 1.2.25 is

rather formidable, but the second approximation given by Eq. 1.2.26 is not too complicated

13



and is easy to implement in a finite element procedure since it is a function of the invariants.

Ogden's method and the three chain model (Eq. 1.2.10) require derivatives of the principle
stretch with respect to the strain ténsor to give the principle coordinate directions which
makes them difficult and inefficient for finite element formulations.

The efficacy of the approximation methods is evaluated. An adaptive numerical
integration scheme was used to get highly accurate approximations of the stress from Eq.
1.2.9. The details are described in Appendix A. The adaptive numerical integration gives
results to an arbitrary degree of accuracy‘and hence will be considered the exact solution.
Comparison of results for uniaxial loading (see Fig. 1.2.4 a) using the proposed series
approximations, the exact npmerical soluﬁon and the three chain model are shown in Fig.
1.2.5. The material parameters G = 0.273 and N = 75 were used. The stress-"f" represents
the force per undeformed area such that f| = o1/A). Fig. 1.2.5 shows that the 3 chain
mod¢1 (1.2.10) is clearly too stiff . The first, second and third order approximations are
given by (1.2.27), (1.2.26) and (1.2.25) respectively. Up until A1 = 4, the first, second
and third order approximation schemes are coincident. For 4 < A; < 7 the first order
approximation begins to deviate considerably frdm the exact solution whereas the second
and third order approximations are close to the exact. For A} > 7 the series approximations
diverge from the exact solution. Although it should be noted that these results are at a

relatively high strain since the limiting strain is A; = V75 = 8.66.

g, =0,=0
61<_| 1——)0.1 <— 61-_-0 —)03
‘s
(a) o (b)

Fig1.2.4 (a)'Uniaxial tensibn (b) Equibiaxial tension (G = G3)

14



In Figs. 1.2.6 and 1.2.7.uniaxia1 and equibiaxial data (Fig. 1.2.4) from James et.
al. (1975) is simulated using the exact numerical solution and the series appr(;ximation. The
stress "f" is the force per undeformed area such tha_t f = 64/A for uniaxial tension and f =
G2/, for equibiaxial tension (cf. Fig. 1.2.4 b). The material parameters G=0.4 and N =
50 were used to model the data. Good fits to the uniaxial data in Fig. 1.2.6 are acheived by
the second and third order methods. Again the first order method tends to be too flexible (=
20% error at A; = 5). The second and third order approximations are again very close to the
- exact solution for equibiaxial tension. For both uniaxial and equibiaxial tension, the second
order approximatiqn is nearly as good or better than the third order approximation. It is
seen that the equibiaxial stretch data in Fig. 1.2.7 cannot be fitted using the classical theory
and its approximations. This is the failure of the classical theory. In Section 2 an

entanglement model is developed which seems to give good fits to the experimental data.
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Fig. 1.2.5 Force per undeformed area f versus stretch for uniaxial tension. The
three different approximation techniques are compared to the "exact" numerical
integration. The material parameters G = 0.273 and N = 75 were used.

15



3.50 | ' ' 1

!
"exact” numerical integration 7
3.00 ~ == == =3rd order approximation =
----- 2nd order approximation 1
2.50 4 o -~ L
Py - | — — - 1st order approximation
< ' o
A, 2.00 | @ uniaxial data n
~
S
w— 1.50 4 L
1.00 L
0.50 .
0.00 | I T T
S 2 3 4 5 6

A

Fig. 1.2.6 Force per undeformed area f versus stretch for uniaxial tension. The
three different approximation techniques are compared to the "exact" numerical

integration. The experimental data is given by James et. al. (1975). The material

parameters G = 0.4 and N = 50 were used.
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Fig. 1.2.7 Force per undeformed area f versus stretch for equibiaxial tension.
The three different approximation techniques are compared to the "exact"
numerical integration. The experimental data is given by James et. al. (1975).

The material parameters G = 0.4 and N = 50 were used.
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2. ENTANGLEMENT MODEL FOR RUBBER ELASTICITY
. 2.1 Introduction

In the classical theory of rubber elasticity, chemical crosslinks deform affinely and
the polymer chains between the crosslinks stretch according toihe relati.ve displacement of
the crosslinks. The‘polymer chains aie_ otherwise unaffected by the surrounding network. It
is apparent that this theory is insufficient in characterizing much of rubber behavior. For
example, it was shown in Figs. 1.2.6 and 1.2.7 that the classical theory could match
experimental data for uniaxial ;ension, but could not additionally simulate equibiaxial
tension data at very large stains. There are many other theories of rubber elasticity, but
most do not considér effects due to finite extensibility of the polymer chains.

One of the first attempts to modify.the classical affine network model of rubber
elasticity was the phanfom network model (James and Guth,1947; Mark and Erman,1988)
in which the crosslinks (except on the surface) were allowed to fluctuate in time without
being hindered by the neighboring chains (hence the teﬁn phantom network). This theory
yielded the same form for the free energy as the classical theory along with a front factor

which depended on the functionality of the network (i.e. tetrafunctional):
AA =Tk T M2+ A%+ 232 -3)

where AA is the difference in free energy jand f is the front factor. The crosslinks deformed
affinely in the average but the cénﬁgurational entropy was increased due to lack of
constraint. Flory (1977) claimed that the junctions could not fluctuate freely because of the
topological restraints of the surrounding network. He proposed the so called constrained
junction theory.

Rheologists have suggested that deviations from classical theory may be due to
topological constraints on the chain itself as opposed to just constraints on junction

fluctuations (Higgs and Gaylord, 1989). Edwards (1977) and Doi and Edwards (1978)
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were among the first to model the constraining effects of the surrounding molecules on a
polymer chain. Doi and Edwards, in work pertaining to polymer melts, argued that the
polymer chain was confined to a tube like region or a 'cage' and fluctuates about a primitive

chain (Fig. 2.1.1).

(a) SN ()
Fig. 2.1.1 (a) Chain confined to cage formed by surrounding molecules. (b) The slip link
model. The polymer molecule is shown as the solid line, the primitive chain is shown as
the dotted line and primitive chains of surrounding molecules are shown as dots.

The primitive chain is defined as the average location in time of the.chain atoms. It is
assumed that the polymer chain remains inside a tube or cage like region formed by the
surrounding primitive chains, since the polymer molecules cannot penetrate each other. The
" cage reduces the number of allowable configurations of the polymer chain, whereas in the
classical theory, the polymer chain is allowed to attain all configurations between
crosslinks. When the rubber or melt is deformed, it is assumed that the primitive chain is
deformed affinely. To simplify the problem, Doi and Edwards introduced so called slip
links to capture the topological constraints. The polymer chain is allowed to move freely
between slip links. The portions of the chain between slip links are considered subchains
and it is assumed that the slip links deform affinely. In thé course of deformation, the
number of polymer segments betwéen slip links varies such that the tension in each

subchain of a given chain is equivalent. This is called chain equilibration by Doi and



Edwards. Marrucci (1979) and Graessley (198»1) applied this slip link model to crosslinked
polymers. In Marrucci's interpretation, the slip links are just trapped entahglements and the

distance between slip links can be defined as the distance between entanglements.
2.2 Development of the Entanglement Constitutive Model

The slip link model was originally derived for the Gaussian range of deformations
but can be easily generalized to the non-Gaussian range. In the following, a derivation
along the lines of Marrucci's will be given to incorporate the non-Gaussian behavior into

the slip link model. The main assumptions in the theory are:

a) The tension in each subchain is the same for all subchains of a given poiymer molecule.
b) All network junctions, either crosslinks or entanglements (or slip links), move affinely

with the imposed deformation.

Fig. 2.2.1 (a) shows an entangled chain in the undeformed state. The chain has crosslinks
at points A and E and trapped entanglements at points B,C and D. Upon deformation (Fig.
2.2.1 b) points A,B,C and D have deformed affinely according to assumption (b) such that

line segments AB and CD have shortened and line segments BC and DE have lengthened.

(a) ®
Fig. 2.2.1 a) Entanglement network in undeformed configuration; b) in deformed
configuration. The polymer chain, shown in bold, has crosslinks at A and E and trapped
entanglements at B,C and D. ) ’ '
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In order for assumption (a) to Be satisfied the number of links in subéhains A'B' and C'D’
have reduced while the numbér of links between subchains B;C' and D'E' hz;ve increased.
In the undeformed state it is assumed that all the subchains are of equal length r, and have
N, statistical links (or monomers links). The undeformed subchain represents a random
walk of step length 1 such that r, = VN, I. After deformation, the ith subchain (Fig. 2.2.2)

is of length rj and contains N; statistical links.

i subchain

Fig. 2.2.2 ith subchain of polymer chain of length r; with N; statistical links.

The polymer chain is composed of N statistical links and ng subchains such that:
ns : ’
,lei =ng No =N (2.2.1)
1=

The mean square length of a subchain with N; sublinks in a relaxed state is VN;j 1 and the

length of the stretched chain is
ri= A YN 1 (2.2.2)

where Aj represents the stretch of the ith subchain. A; should not be confused with A;

which is the stretch of the ith line segment between the entanglement points. For example,
in.Fig. 2.2.2 A; =B'C'/ BC where B'C' is the affinely deformed line segment BC, while

Aj is the stretch of a subchain with Nj links which occupies B'C'. The force in the jth

subchain is described by the following relation (Treloar, 1972):

A |
fi= T L (g )= L <§/_1) kTLl(\/—N—)

(2.2.3)



where k is Boltzmann's constant, T the absolute temperature, 1 the length of the statistical
link and L-! s the inverse Langevin function. According to assumption (a) the force in all

the subchains is equal; therefore for all 1,

A .
f;=f and ——= K (constant 2.2.4

It remains to relate the constant K to the continuum mechanics of deformation. Now using

Eq. 2.2.1 and A; = VN; K from Eq. 2.2.4, the cumulative length of the subchains is:

ng Ng Mg
>ri = 2 AiVNil= > K Nil=KngNp1l (2.2.5)
i=1 i=1 =1

The undeformed length between line segments was assumed to be VN, I; therefore,

according to the affine deformation assumption :

n Ng '
_Zslri - 21 A VNG 1= A8V ny NG | (2.2.6)
1= 1=

where A2V8 is the average stretch over all sublinks. Because only uniform deformation is
considered (i.e. the deformation gradient is independent of position), the stretch A; is only

a function of the spherical coordinates 8 and ¢. The average stretch can be described by:

N
ng ~
1 i
We= 3 i o= 2 Mmdm) 70 (2.2.7)
1= = ‘

where 0, represents the number of subchains in the (6y,0m) direction and N is the total
number of orientations. Now if it is assumed that the chain is highly entangled such that
there are many subchains and that the undeformed distribution of subchains is isotropic the

following approximation can be made:

B V)

~ 2nr R
A= Y MOmbm) 2 = f f MO.D) sin © dO d (2.2.8)
m=1 s 4n 00 .

where the integral is over the unit sphere and the variables © and @ represent the

orientation of the undeformed line segments. It seems reasonable that 2.2.8 is still a good
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approxunanon even when the chain is not highly entangled; say for instance a chain
containing three subchains in the directions of the principle axes of stretch. The operator (-)

is standard notation for the average quantity over orientation distribution space such that:
1 P24
w=— [[ne®snodwie (2.2.9)
4r o '

Using Eq. 2.2.5, 6, 8 and 9 gives:

K ng Ng 1= (A) ngyNg 1 (2.2.10)
or
) »
K= —/— 2.2.11
N (2.2.11)

- Therefore, the force in the chain can be calculated using Eq. 2.2.3, 4 and 11 such that:

f

KT | )
rOR

It remains to find the stress versus strain constitutive relation from Eq. 2.2.12. The easiest
way to do this is to derive the free energy function for the solid by summing the
contributions from all the polymer chains. The free energy of the ith subchain with length r;
force is defined by the relation: |

w; = f £ ) di; - (22.13)

0

Using 1; = Aj YNj | from Eq. 2.2.2 and equating Eq. 2.2.4 and 2.2.11 gives:

, VNG Nj
Al‘— \/N_O(K) and 1= m(k}l (2.2.14)

Using Eq. 2.2.12, 13 and 14 and the fact that f; = fA gives the free energy of the ith subchain

in terms of (A).

(k)/\]No
(A (A) '
(=kTN; |L-! 2.2.15
w TN J ( r——) d( r——No) ( )

0

) (2212)
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‘Using Eq. 2.2.1 and 2.2.15, the free energy of all the subchains is summed to get the free

energy for the jth polymer chain:

M)/ VNg
. Ng ' <7»> 0‘)
chain _ =kTngNg jL 1 d 2.2.16
Wj iEIW ng No 0 (== N ) d(— r—NO ( )

The force in the polymer chain (Eq. 2.2. 12) is not dependent on the orientation (i.e. the
spherical coordinates) of the chain (unlike the classical theory) and hence all the polymer
chains have the same force. The total free energy W is found by summing the contribution

of all n polymer chains:

N M\ 7 VNy
W((A) = lej-chai" =GN, JL I( JOI:I_> ) d(\j)l;_> (2.2.17)
1= (o] (o)
0

where G = n ng kT. To calculate the stress tensor it is necessary to take the gradient of the

free energy with respect to the Green's Strain tensor Cj; as such:

oW __ aW W)
9Cij  a(r)y 9Cij

Now MO,®) = VM; Cjj M; , where Mj = M; (©,D) is the unit vector along a subchain in
the undeformed reference configuration as defined in Eq. 1.2.11. Using Eq. 2.2.9, the

derivative of the average stretch with respect to the strain is taken as follows:

S S U S — 1 i MM
aCy - facij‘/ M Cxi Mpy sin® d© d<1>_4Tt f 2—lx sin@® d© d®

(2.2.19)

Using Eq. 2.2.17,18 and 19, the Cauchy stress for an incompressible rubber is found to
be:

W A M; M;
Okl =2 Fm%ﬂj +p ok =GN, L'l(%) Fk1< -“l}“\’——‘l) Fj+p O (2.2.20 a)

(2.2.18)
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The incompressibility assﬁmpﬁon can be relaxed by adding a hydrostatic (bulk)
contribution to the strain energy formula Eq. 2.2.17. An alternate form of Eq. 2.2.20 (a) is

given:

o= G VN; L1 ) ( u'kxu'l>+p6kl

VNo
. A
=G VN, L-I( \jN—>O ) <7\, mg m1> +p §k1‘ (2.2.20'b)

where u = Fi; M; = A my is the deformed unit vector My such that A = (uk u's)!/2 and my
is the unit vector along the deformed subchain.

As with the classical theory, the entanglement model relies on two parameters to model
elastomer behavior. In the entanglement model the parameter G dgpends on the total
number of subchains and temperature and N, is the average number of crossiinks between

entanglements.

2.3 Verification of Entanglement Model

Numerous investigators have compiled ample experimental data for rubber strained

into the non-Gaussian region of behavior (Treloar, 1944; Obata, 1970; Jones and Treloar,
1975; James et. al., 1975; Vange;rko and Treloar, 1978ﬁ etc.). Results from these tests
show that elastomers strained into this region share much qualitative behavior, but that the
classical theory using Langevin statistics is insufﬁcient in simulating the experimental data
(Treloar and Riding, 1979; Wu and Van Der Giessen, 1993; etc.) In particular, Treloér and
Riding (1979) showed that for chosen values of G and N the classical theory could fit
uniaxial tension data but not additionally fit the uniaxial compression data. For the class of
incompressible materials (which rubber is oftén assumed to belong) the equibiaxial tension
test is equivalent to the uniaxial compression test. Plots which show the tensile stress from
the equibiaxial tensile test, as opposed to the uniaxial compressive force, tend to magnify
the discrepancy between the classical thebry and the actual behavior. As seen from the

results of the classical theory shown in Fig. 1.2.7, the equibiaxial tension appears to be
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grossly underestimated. The entanglement model using Eq. 2.2.20 is used to"simulate the
same experimental data (James et. al., 1975) for uniaxial tension and equibiaxial tension
along with additional pure shear data (see Fig. 2.3.1). Analytical solutions of Eq. 2.2.9
and 2.2.20 are given in Appendix B for uniaxial and equibiaxial deformation. For pure
shear deformation Eq. 2.2.20 (see also B.10) was integrated numerically using the

procedure outlined in Appendix A.

Fig. 2.3.1 Pure shear deformation
Eqs. B.4, B.6 and B.10 are used to simulate uniaxial tension, eQuibiaxial tension
and pure snear datn given by James et. al. (1975) and Treloar (1944). The reeults are
shown in Figs. 2.3.2 and 2.3.3 in terms of the force per undeformed area f and stretch.
The uniaxial tension is in the 1 direction such that f = 51/A (cf. Fig. 1.2.4 a) while for the
equibiaxial and pure shear deformation the stress plotted is in the 2 direction such that f =

Oo/\;, (cf. Fig. 1.2.4 b and Fig. 2.3.1) . The folldwing material parameters were used to fit

the data:
Data from James et. al. (1975) Data from Treloar (1944)
G=0.53 G=04 '
Ny =20 No=22
‘ Table 2.3.1

The entanglement model appears to give good results for the different deformations for
both James et. al. (1975) and Treloar's data. In order to illustrate the effect of the finite
extensible chains, Fig. 2.3.3 also shows a uniaxial curve for the entanglement model with

infinitely extensible chains, i.e. N, -> oo. Further analysis is made in Section 2.5
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Fig. 2.3.2 Force per undeformed area for uniaxial tehsmn biaxial tension, and pure
shear. The results by the entanglement model Eq. 2.2.20 are given for G = 0.53
and Ny = 20. The data is taken from James et. al. (1975).
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2.4 Approximation of Constitutive Model

The form of the constitutive relation Eq. 2.2.20 is not amenable to general
boundary value problems due to the integral over the orientation distribution space.
Methods similar to those introduced in Section 1 are used to find a viable approximation to
Eq. 2.2.20. The first step in providing the approximation is to get an appfoximation for the

average stretch. A Taylor series expansion about the stretch A2 =1} /3 is used as follows:

2

A" 32508

Ly ) ;
MO,P) ~ V13 +[ a}”z} A}©@)-1y+ 1| O* (7»2(6,@-%1)2
. )f—_—lL x’;&
3

=i +1 (4" dlee -+l 1)l ee -1

3 (2.4.1)

where A2(0,D) = M; Cij M;j where M = M; (©,®) are the direction cosines and Cj; is the
Green's strain tensor. The approximation of Eq. 2.4.1 is shown in comparison to the

exact value of A(©,®) with ® =0 (i.e. x-y plane in Fig. 2.4.1) for uniaxial extension A,

in the 2D parametric plot of Fig. 2.4.2 (a).

y .
| Fig. 2.4.1 Coordinate system used in Fig. 2.4.2 and 2.4.3

The unusual form of the plot (a figure eight) is due to the fact that the parameters (©,D)
refer to the undeformed configuration. Using the transformation A~2(8,0) = m; B;jl m;,

where Bs; is the inverse Finger tensor and mj = m;(6,¢) are the direction cosines in the

!
]
deformed coordinates, in the first part of Eq. 2.4.1 gives the approximation for A8,¢) and



yields the more familiar strain ellipsoid plot shown in Fig. 2.4.2 (b). Similar type plots are

shown in Figs. 2.4.3 (a) and (b) for simple shear (y = 2) in the x-y plane.
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Fig. 2.4.2 (a) 2D parametric plot of A(©,D) Fig. 2.4.2 (b) 2D parametric plot of A(8,0)
in x-y plane for uniaxial extension in the x in x-y plane for uniaxial extension in the x
direction. v direction.
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Fig. 2.4.3 (a) 2D parametric plot of A(©,D) Fig. 2.4.3 (b) 2D parametric plot of A(6,0)

in x-y plane for simple shear in the x direction. in x-y plane for simple shear in the x direction.

Results shown in Figs. 2.4.2-3 show that Eq. 2.4.1 is a good approximation. To get the

approximation for the average strain (A), Eq. 2.4.1 is integrated over the orientation space

as such:

12 3n%
'<x>'=\/11/3+8i(—) ”o& )d@d¢+%—(—) ”o&’- 17 0 dd (24.2)
n

Substituting the integral identities given by Egs. 1.2.20 - 1.2.22 into Eq. 2.4.2 gives the

following for the average strain:
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»=To 2

172
(311 + 113/2

) . (2.4.3)

Because the second integral in Eq. 2.4.2 vanishes, Eq. 2.4.3 provides a high order

approximation in a simple form. In figure 2.4.4 (a), the approximation Eq. 2.4.3 is

compared to the exaét solution Eq. B.3 for uniaxial tension and compression. In Fig. 2.4.4
- (b), Eq. 2.4.3 is compared to the numerical quadrature solution of Eq. B.9 for pure shear

deformation where A is the maximum principle stretch.

——exact 1 41 —eXxact
a o approximation (O I H S approximation

Fig. 2.4.4 (a) average stretch (A) for uniaxial Fig. 2.4.4 (b) average stretch (A) for shear

deformation. deformation where A is the maximum stretch.

The approximation for the average shear gives good results over a wide range of strains.
The tensor in Eq. 2.2.19 can be approximated by taking the appropriate derivatives of Eq.

2.4.3 and the derivatives of strain invariants as follows:

AN _ M AN _ V3 3 L s 3
3C; = oL, aC; * L oc; = 4 W-5753) %10

132G (2.4.4)

Substituting Eq. 2.4.4 into Eq. 2.2.20 (a) and making the appropriate tensor

multiplications gives the approximate form for the Cauchy stress tensor shown in 2.4.5:

A —
O-U_G\['N_oLl(\j_>o (\)—3(11 _3§ 15/2) Bjj - \/53 11'3/2_Bi2j )+P8ij (2.4.9)
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where Bj; is the Finger tensor and Eq. 2.4.3 is used for (A). Using the apprb_ximation for
the inverse Langevin function (Eq. 1.2.7) gives a closed form expression entirely in terms \
of strain and strain invariants:

V3 1,
3G '1'6(3111/2+ W )

oo (
T (LB (g S~
\/—I\TO'IO I

v3, 31 243 ‘
> Irt2-3 Té/z) Bjj - TII'3/2Bi2j)+Paij

_ (2.4.6)
Eq. 2.4.6 is used to model the same data given by James et. al. (1975) for uniaxial, biaxial
and pure shear deformation. The results are shown using the force per undeformed area as |
in Fig. 2.3.2. For the results in Fig. 2.4.6 a slightly different value of G (0.50) than that
of Fig. 2.3.2 (0.53)'was used to get the best fit of the data. The following material

parameters were used to fit the data using Eq. 2.4.6 (compare to Table 2.3.1).

Data from James et. al. (1975) Data from Treloar (1944)
G=0.50 G=04
N, =20 _ No =24
Table 2.4.1 A

James et. al. (1975) provides additional data for biaxial deformation for the same rubber
sample. The biaxial tests (Fig. 2.4.5) were made such that A was varied for different
values of A1 and the family of curves are plotted as (01 - 02) versus Ay (Fig. 2.4.7).
Again, the same rubber was used by James et. al. (1975) for the uniaxial, equibiaxial, pure
shear and biaxial tests (Figs. 2.4.6 and 2.4.7), hence the same material parameters were

used.

Fig. 2.4.5 Biaxial deformation
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Fig. 2.4.6 Force per undeformed area for uniaxial tension, biaxial tension, and pure shear.
The results by the entanglement model approximation Eq. 2.4.6 are given for G = 0.53 and
N, = 20. The data is taken from James et. al. (1975).
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Fig. 2.4.7 The principle Cauchy stress difference for biaxial loading. The solid lines
represent results by the entanglement model approximation Eq. 2.4.6 using G = 0.53 and
No = 20. The data is taken from James et. al. (1975).
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Fig. 2.4.8 Force per undeformed area for uniaxial tension, biaxial tension, and pure shear.

- The results by the entanglement model approximation Eq. 2.4.6 are given for G = 0.4 and
Ny = 24. The data is taken from Treloar (1944).

The data given by Treloar (1944) is also modeled using Eq. 2.4.6 with results shown in
Fig.2.4.8. The material parametefs used are shown in Table 2.4.1. This time é slightly
different value for Ny was used than that used in Section 2.3; With Eq. 2.4.6, No = 24
was used. With Eq. 2.2.20, Ny = 22 was used. |

Thé different values of G and Nj used to model the experimental data can be
considered very small. It is concluded that Eq. 2.4.6 in terms of invariants and strain is

successful in approximating Eq. 2.2.20.
-~ 2.5 Analysis of Results from Entanglement Model

From comparison of results by the classical theory Figs. 1.2.6 and 1.2.7, the

entanglement model shows better quantitative agreement for the equibiaxial tension data
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particulary at the higher strains. The classical theory tends to predict much loyver values of
stress in equibiaxial tension not only for the data shown (James et. al. 1975), but for all
data surveyed (Treloar and Riding, 1979; Obata, 1970; Jones and Treloar, 1975; Vangerko
" and Treloar, 1978; etc.). In fact results shown in Figs. 2.3.3 and 2.4.8 for Treloars data
show that the entanglement model tends to over estimate the equibiaxial stress. Results for
the additional biaxial data (Fig. 2.4.7) show that the entanglement model is valid over a
wide range of loading conditions. Results from Treloar and Riding (1979) show that the

- classical theory gives poor quantitative results at low values of A; for biaxial deformation
test results like those seen in Fig. 2.4.7 .

It is particularly impressive that a two parameter model (G and No) is capable of
modeling such a broad range of data. In all the results shown using the entanglement
model, G and N, are merely chosen to best fit the uniaxial data and the remaining test data
fit naturally. In fact G is chosen by matching the data at small strain and N, is chosen to
model the upturn at high strains. In James et. al.(1975) third and fourth order Mooney
Rivlin type strain energy functions with 6-8 determinable coefficients were used to model
the biaxial data shown in Fig. 2.4.7. Values for thé coefficients were found by least square
fits of the biaxial data and the results were comparable to that given by the entanglement |
model. But it was further shown that in uniaxial tension beyond the Value, of A = 3.5 the
results of the Mooney Rivlin model were poor. Unreasonable results may occur whenever
a strictly phenomenological model is deformed beyond the range of values and outside the
types of lbading used to find its coefficients.

Ogden's method also relies on six determinable parameters to get good results.
Mofeover, Ogden's method is consistent with the Valanis-Landel hypothesis that the strain
energy function is expressible by a sum of separate but identical functions of A}, A7, and

A3 i.e.
Wk, Aa,A3) = W-OLI) + w(As) + w(A3) (2.5.1)



The difference in principle stresses ﬁsing this form of free energy is found by Eq. 2.5.2

such that,
Ci1-02=A WA - A2 W'(Ay) (2.5.2)

Constitutive la§vs which are consistent with the Valanis-Landel hypothesis and, hence Eq.
2.5.2 will yield parallel 6| - 65 curves for biaxial stretch loading of the type seen in Fig.
2.4.7. The strain energy for the entanglement model is not separable Aas in (2.5.1), but for
the range of stretches 1.3 <A < 3.5, 0.2 < A < 3.5 the entanglement model gives results
which are close to parallel. Biaxial data from Vangerko and Treloar (1978) over a broader
range of stretches shows G - G, curves converging at very high stretchs suggesting that
the Valanis Landel hypothesis may be invalid at these high stretch ratios.

The entangl;:ment model given by Doi and Edwards, Marruci and Graessley and

generalized here for non-Gaussian deformations is admittedly crude. One of the object_iohs ,

to the model is that the subchains between entanglements are considered fixed after
deformation has occurred. That is the number monomers (or statiétical links) between the
subchain‘does not vary in time. In reality the chain wriggles back and forth across the
entanglement. More sophisticated hoop models (Higgs and Gaylord, 1990) and tube
models (Gaylord et. al., 1987) have been developed which consider this and other effects
but do not consider finite extensibility. Another objection to the model is the affine
deformation assumption for the crosslinks and entanglements. Again, a more sophisticated
model exists (Ball et. al. 1980) where non-affine deformation is considered. The
entanglement model u'séd here is an exaggerated case such that in the undeformed
configuration it is assumed that a given chain bé_tween crosslinks possesses an infinite
number of subchains oriented isotropically between entanglements. As mentioned in the
development of thé model, it is more likely that a given polymer chain has a few subchaihs
oriented in a few directions between entanglements. Even so, the chain experiences

deformation in multiple directions. In the classical theory, the chain is only influenced by

the displacement of the crosslinks in a given direction and is not concerned with the -
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deformation of the neighboring chains. From experimental evidence it may be assumed that
the exaggerated entangled state may be closer to reality than the chain oblivious to its

surroundings.
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3. CONSTITUTIVE EQUATIONS USING VIRTUAL WORK

In the case of inelastic deforrnatidns, the stresses, in general, cannot be determined
by the gradient of a free energy function and an alternative method must be used to derive
the macroscopic stress from the microstructure. The method developed here equates the
external virtual work of .the macroscopic stress to internal virtual work of the
mjcrostructural elements. It could be used to find the expression for the stress in polymer

‘networks, fiberous composites, crystal plast‘i'city etc. such that the sources of internal
virtual work reflect the rélevant rhechanisms involved in the material. The expression for
the stress tensor arrived at using this virtual work approach is actually the same expression

used by rheologists: Rheologists develop their expression by a different approach,

Undeformed Unit Cell Deformed Unit Cell
Volume =V : Volume = v

Considering the unit cell above such that only homogenous deformations are

applied, the rate of external virtual work is given by:

where oj; is the Cauchy stress, v is the deformed volume of the unit cell, and Sdij is the
virtual rate of deformation gradient given by
1 aVi aVJ _ 39
Sdij =9 3 'a'—)zj' + a—xl (3.2)
such that x; = x;(t) is the current coordinate position and v; is the velocity. It remains to

specify the internal virtual.
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Consider the segment of polymer chain or fiber in Fig. 3.1 in the current deformed
~ configuration. The current length of the fiber Ax = A 1, m where l, is the oriéinal
undeformed length, A is the stretch and m is the unit vector in the current direction of the
fiber. For convenience, it is assumed the force f = f m on each chain end is the same” .

The magnitude f depends on the stretch A and the stretch history such that f = f(A).

ov(x)

N

f dv(x+ A x)

0]

Fig. 3.1 Deformed fiber undergoing a virtual deformation

The rate of internal virtual work for the given fiber is defined as:

SWHE = f- (8v(x + Ax) - dv(x)) - (3.3)

where &v is the virtual velocity. It is assumed that the chains or fibers deform affinely such
that the endpoints of the line segment are embedded in the continuum. Furthermore only

homogenous deformations of the fiber are considered; therefore,

dvi(x + AX) - ovi(x) =8 (%) AXJ- (3.4)
]

Substituting, 3.4 into 3.3 gives:

* This assumption can be relaxed such that force is different at each end amounting to a distributed force
acting along the length of the chain. In which case the element shown in Fig. 3.1 would be a differential
element and an integration along a total length would be necessitated. Furthermore, for fibers a moment and
a shear force could be incorporated at the end the element but is not necessary for a polymer chain.
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5me=f7hlomimj5(%%)=f7vlomimj5dij - (3.5)

j

Now 8WTf; (Eq. 3.5) represents the virtual work of one fiber of given orientation m.To
get the total amount of internal virtual work, the contribution of the virtual work of all the
fibers will be summed. It is recognized that all fibers with identical orientations in spherical

coordihates (8,9) (cf. Fig: 3.2) will have the same stretch, stretch history and consequently

the same force.

B :
Fig. 3.2 Orientation of unit vector m

The number of fibers in a given orientation (6,¢) of the unit cell is given by the relation

(Van Der Giessen et al. 1993):

dn; = n C(6,0) V sin 6 d0 do
(3.6)

where n is the number of fibers per unit undeformed volume, C(8,0) is the orientation

distribution function, and V is the undeformed volume of the unit cell. Using Egs. 3.5 and
3.6 and integrating over all possible orientations the total internal virtual work is expressed

as:

it . P 31 )
W, = f f SWF dn, = f f f0) my m, A1, 8d;, 0, C©®,0) V sin 6 46 dp
s 20 d
(3.7)
To satisfy the conservation of momentum, the external virtual work must equal the internal

virtual work i.e.
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dWexe = OWipn . (3.8)

Substituting Egs. 3.1 and 3.7 into 3.8 yields:

2n
6, &inv=n,1,V f f f(A) m; m, A 8&d;, C(B,@) sin 6 do do
00 s
(3.9
It is noted that j = v/ V, where j is the determinant of the deformation gradient , v is the

deformed volume and V is the undeformed volume. Since only homogenous deformation

gradients are considered Eq. 3.9 may be restated:

2t
(- nulo s [ [ 0 mimy 1 COsin 0 d0 dp) 80 =0
' ' (3.10)

In general the virtual deformation gradient 8d;y is arbitrary; henceforth the Cauchy stress

can be written:

nrx
1 .
Cin =Ntk Tf f(A) m; m, A C(8,0) sin 6 dO do
60
| (.11)
The polymer matrix also exhibits an addltlonal resistance to volumetric change and in many

cases is treated as incompressible. In this case the admissible deformations are con51dered

isochoric such that virtual rate of deformation gradient 8d;; = 0 . To apply this constraint,
- Eq. 3.8 must be modified as such:
8\Wext - 8\Nint +p (Binsdin -0)=0
(3.12)

Where p is the undetermined Lagrange multiplier. Using 3.1, 3.8 and 3.12 gives:

(Gin S0l } f f f0) m; m,, 4 C®,) sin 6 dg d - p sin) 8dip =0
. (3.13)
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Because of the Lagrange multiplier, the virtual rate of deformation gradient can again be

considered arbitrary such that,

i
1 . A
o, =Nly -J—ff f(A) m; m, A C(0,¢) sin @ do do + p 3.
00
' (3.14)
, Eqs. 3.11 and 3.14 are stated in terms of the variables (8,¢) which represent the

current orientation of the deformed fibers. The initial orientation of a given fiber may be

represented by the spherical coordinates (©,®). As in Section 1, the deformed and

undeformed coordinates are interchangeable and their transformations can be stated as such:

(6,9) = (6(0,®;1), $(0,®;1)) (3.15 a)
J+_a<9,¢>|=a_ea_¢__a_m -

0(0,0)] 00 0@ ID IO (3.15 b)

do do = J dO dd. (3.15 ¢)

where J is jacobian. The deformed orientation m; can be mapped to the undeformed
~ coordinates by the following transformation:

1 OXi

=L M
(3.16)
where Mk are the direction cosines for undeformed orientation.
M=Mgeg =sin® cos ® e+ sin O sin P e; + cos O e3
(3.17)

Performing the transformation to undeformed coordinates on the integral 3.11 the

following results:

2r =

=n,l —1-:3—)(1—% fo) MM lC(e ) J sin 6 dO d®
Cin=t °7 Wy Xy K L)\’ 50,
®

0

(3.18)



Conservation of the number of fibers between the deformed and undeforméd configuration
requires that C(6,0) sin 6 d0 d¢ = C(0,P) sin © dO d®. Using (3.15 ¢) alo.ng with the
assumption that the initial distribution of the chains is isotropic, i.e. C(‘G),CD) = 1/4r, yields
C(6,9) J sin 6 d© d® = (1/4n) sin® dO dP. Hence, Eq. (3.18) becomes,

2rn

Lo % 1 sin®
Gil’l 1 f(}\,)MK MLX ?d@ de)

8X 8XL
(3.19)
The use of thé deformed and undeformed orientations amounts to a Eulerian and
Lagrangian}description. The second Piola Kirchoff stress can easily be extracted from 3.19

giving:

2t r

1 sin
SKL Ht JJ‘fO\')MKMLI K—d@d(b

00

(3.20)
Sometimes the force f(A) is the gradient of a free energy function such that,
8‘P A
f) = ( ) (3.21)
Now }\, = MK ML CKL SO that,
ok _ MM,
2 e~ A (3.22)

where CKL is the Green tensor. Substituting 3.21 and 3.22 shows that when f(A) is the

gradient of a scalar function, the stress is the gradient of a scalar functional as follows,

2rn

SkL=m 1o —” IFRH) , op SO de do

o " dCkr 4n

a0
2n

' 3 sin @
=nt1°28C—KL YL) = sm@)d@dd)—nl 2

00

8(‘1“) (3.23)
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So, whether one obtains the stress from Eq. 3.20 or first obtains the free energy function

(¥) and then uses (3.23) (as was done for the elasticity models), the results are entirely

equivalent.
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4. VISCOELASTICITY MODELS FOR RUBBER
4.1 Introduction

The large strain viscoelastic models of rubber used by solid mechanics analysts
are purely phenomenological. More physically based models are examined which more
directly incorporate the effects of ihtermblecular friction, and the transient nature of the
forces and orientation of the polymer chains. Mechanisms which cause viscoellasticity in
polymer liquids (i.e. polymer solutions and polymer melts) are similar to those in solid
rubber. Hence, it will be instructive to present some of the concepts from polymer fluid
dynamics. Rheologists have developed complete theories for the viscoelasticity of
polymer solutions and polymer melts. These theories can provide a spectrufn of
relaxation times, the orientation distribution of the polymer chains and the constitutive
Jaw relating the stress to the time history of deformation. Many assumptions are made in
these theories; therefore, they are only valid under very ideal conditions. For example the
theory for polymer solutions assumes that the polymer chains are of sufficient molecular
weight while very dilute such that the polymers chains do not interact. The reptation
theory for polymer melts is only Validv for monodisperse conditions etc. Nevertheless
these theories are useful in relating certain underlying molecular mechanisms to
macroscopic observations and can be modified phenomenological to reflect more realistic
non-ideal conditions. The concepts used by rheologist for polymer fluids will be used
here to develop viscoelasticity ;nodels for solid rubber. |

The first theory developed here is primarily concerned with relatively short
polymer chains in a highly crosslinked network. In this theory it is assumed that all the
chains in the network are crosslinked such that there are no dangling or unattached chains
which can affect the viscoelasticity of the rubber. This viscoelastic theory provides a time
dependent 'backstress’ which can be appended to the evlastic stress given by the

entanglement model developed in Section 2.
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Another theory which incorporates effects from the uncrosslinked polymer chains
is presented. The theory is an extension of the réptation model for polymer melts to solid
‘rubber and is consistent with the entanglement model presented in Section 2. This model
appears to give better correlation to available data from constant strain rate experiments .

* Not very much attention has been paid to finite sfrain viscoelasticity of

solid rubber in the literature. This is especially true for rubber where effects due to finite
extensibility are apparent (i.e. upturn in stress verses strain curves). Phenomenological
theories have been put forth by many authors. One reason that a comprehensive
molecular theory has not been developed is that the problem is rather complex (the
elasticity problem is hard enough!). In the following development, concepts from the
rheology of polymer fluids are introduced. These concepts will clarify the origins of

visoelasticity and motivate the viscoelastic model developed here.
4.2 Topics from Rheology

A typical uniaxial relaxafion curve for a gum rubber (i.e. unfilled) is shown in Fig
1. The first theory attempts to describe the rubber as it goes from the glassy region to the
rubbery region of behavior. As seen from Fig. 4.2.1 for a small step strain (=5%) the
stress goes from 1x109 dynes/cm?2 (100 MPa) to lxlOﬁdynes/cm2 (0.1 MPa). At the very
beginning of the glassy region for small strains, much of the deformation is due to the
change in bond lengths in the polymér chain. Because these bonds are very strong, the
material can be very stiff. The molecular chains do not find their equilibrium distribution
immediately after deformation because friction from surrounding molecules inhibits their
motion. For relaxation tests with strains higher than 5%, the bonds will break and or the
chains atoms will flow immediately after deformation (Ward 1983). After some time has |
passed thermal motion of the chain atoms causes the polymer chains to reconfigure so
that the high stress (100 MPa in Fig. 4.2.1) subsides (Ward,1983). This phenomenon

occurs during the glass to rubber transition seen in Fig. 4.2.1. After substantial time has



elapsed the polymer chains will find their equilibrium configuration which corresponds to
maximum entropy. In order to model the viscoelastic (glass to rubber transition) the
intermolecular friction is taken into account. This can be done in different ways

depending on the nature of the polymer (i.e. rubber solid, polymer liquid, polymer melt).

10.00
.\
800 | |
2
&
g
>
©
S 600 |
s
g ‘glassy glass to rubber rubbery (elastic)
B 4.00 L transition (viscoelastic) |
2.00 [ : | I

log t (seconds)
Fig. 4.2.1 Uniaxial relaxation curve for rubber after 5% step strain
(taken from Ferry 1981).

Typical relaxation curves for a dilute polymer solution and a polymer melt in

shear are shown in Fig. 4.2.2. Dilute polyir_ler fluids are composed of solvent (e.g.
decalin) and suspended polymer chains (e.g. isobutylene). A polymer melt is made up of.
uncrosslinked polymer chains and contains no solvent. The degree of polymerization can
range from tens to thousands of monomer units per polymer chain. At short times both |
polymer fluids and rubber (Fig. 4.2.2) have similar types of behavior. The plateau
behavior seen by the polymer melt 1s due to the entanglements encountered by polymer
chains. The region where the stress decreases rapidly is called the terminal zone. As will

be described further, rheologists use the Rouse theory to describe the behavior of the
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fluids at short times and reptation theory to describe the plateau and terminal behavior of

the polymer melt.

10.00 , I | , T
typical polymer melt
7.75 - — — - typical polymer solution -
o~
= ~
2
8
§ .
< 550 —
«
% . \ plateau region
: - f
= 325 - \ | -
. A\ terminal zone
\ .
1.00 1 | ) 1 | | |
-0.5 0 05 1 1.5 2 2.5 3 3.5
log t (seconds)
Fig. 4.2.2 Typical relaxation master curves for a dilute polymer solution
and a polymer melt in shear.
4.2 a Polymer Fluids

Oyer the years rheolbgists have made substantial efforts in attempting to
characterize the viscoelastic behavior of polymer solutions and melts. In fact the
viscoelastic behavior of dilute polymer solutions is well understood. Under certain
conditions the Rouse bead sprir;g model can be used for this type of solution. For
example, a long polymer chain (Fig. 4.2.3 a) can be modeled by a series of springs
connected by beads (Fig. 4.2.3 b). Each spring is called a subchain and may consist of a
hundred or so monomers. The number of beads and springs used to discretize the chain is
usually determined heuristically. An equation of motion is derived for the bead chain

molecule. Solving this equation yields the constitutive law for the polymer liquid.
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The configurational distribution function Y(X1, X2, ... X, ...XN) (or y(x) for short)
describes the likelihood that a given polymer chain (bead spring model that is) will be in
some configuration x, X2, ... Xj, ...XN where x; is the position vector for the ith bead (See

Fig. 4.2.3 b). The function y(x) is normalized such that the integral of y over all

orientations X; is equals 1.

f Y(X1,X2,.... XN) dx1dxs.... dxn=1 4.2.1)

Since the solution is assumed to be very dilute, the polymer molecules are treated as
though they do not interact and are only affected by the sﬁrrounding solvent.
Consequently, the configurational distribution function for a given polymer molecule is
independent of the ‘other molecules. The configuration of a crosslinked pol)}mer chain is

not independent of surrounding chains and is hence more complicated to analyze.

&(K'Xj‘;(j)

Hydrodynémic Drag

on the jth Bead
(b) !

Fig. 4.2.3 (a) A polymer chain suspended in fluid. (b) The bead spring

. representation of the chain. Béads 1 to'N are connected by springs.



Fluid flow produces viscous forces on the chain atoms. The hydrodynamic drag
experienced by the subchain atoms is lumped at the beads. In fig. 4.2.3 (b), the i th bead is
denoted by its position vector x;. If the‘ﬂuid is subjected to a homogenbus velocity
gradient X, the fluid velocity at x; is defined by k- x;. Hence, the viscous force on the jth
bead is figrag = &€+ Xj - X;) where £ is the drag coefficient for the bead (usually
considered a sphere).

Since the subchains are assumed to be sufficiently long, they are treated as

Gaussian chains i.e. linear springs. Therefore, the force by the springs on the ith bead is

3 kT kT kT
Pspring = 3@ (Xi+1 - Xi) - 3@ (Xi - Xj-1) = 3? (Xit+1 - 2 Xj + Xj.1)

'Where k is Boltzma‘mn's constant, T is the temperature, b = VN; 1 is the equiiibrium length
of a subchain, Ng is_the number of monomer links in a subchain and 1 is the length of the
monomer link.

The atoms which make up the subchains have a random motion known as
Brownian motion due to thermal energy. The Brownian motion of the chain atoms is
lumped at the beads so that the motion of the beads is considered random. The random
motion of say the jth bead is not to be confused with X which is the drift velocity (time
averaged Velocity) of thé jth bead. Now the random motions of the beads is provided by

so called Brownian motion forces. It is assumed that the Brownian force on the ith bead
will be fiprgwnian = -kBT(9 /0%;) In y(x) where kg is Boltzmann's constar\lt and T is
temperature. Without going intc; detail, the force is entropic in nature su;:h that the
particles (beads in this case) tend to reduce the gradient of their distribution y; i.e. tend
towards maximum entropy. |

Neglecting inertia, the equation of motion of the ith bead is given by the

summation of forces due to hydrodynamic drag, Brownian motion, and the springs

connecting the (i - 1)t and the (i + 1)t bead (Bird et. al., 1987):
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d kT
E®Rj-x-x;) -kT EIHW(X)+357 (Xis1 -2 X +X;.1) =0 .

Viscous force Brownian force  Force due to connecting springs

There are N such equations of motion; one for each bead. Now suppose that an impulsive
‘ﬂow k(t) =K 0O(t), where 8(t) is the dirac delta function, is applied to a fluid in
equilibrium. Examination of Eq. 4.2.2 shows that the viscous forces applied at the beads
by the flow of the solvent would force the chain to deform affinely (Fig. 4.2.4) -
immediately after deformation is applied such that i-i =x- xj and

O+

x;(0%) =f x 6(t): F- x;(0) df =J‘. F- x;(0)dt=F- x;(0)

where F is the deformation gradient, x;(0") is the position vector of the ith bead prior to
the flow and x;(0*) is the position immediately after flow. This situation is illustrated in
Fig 4.2.4 where the chain in equilibrium (Fig 4.2.4 a) is deformed affinely by a shear
flow such that the subchains in the deformed chain (Fig 4.2.3 b) experience tension or

compression depending on its orientation at instant of flow.

shear flow

@) - (b)
Fig. 4.2.4 (a) Bead-spring model of chain in equilibrium. (b) Chain after instantaneous
shear flow is applied. Note tension and compression in subchains due to deformation.

After time, the tension and compression in the subchains will subside since the
macroscopic flow has ceased and the chain will return to an equilibrium configuration.
The relaxation process does not occur immediately because of the friction between the

solvent and the beads. The evolution of this process is determined by the diffusion
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equation. The diffusion equation is derived by combining the N equations of motion
given by Eq. 4.2.2 plus an additional equation. The additional e(juation is provided by
taking the time derivative of Eq. 4.2.1. Since the orientation is a function of time i.e. X; =

A X; (1), the time derivative of (4.2.1) gives

yx) X 9
ot _2&7&7

- (X5 W(x)) (4.2.3)
=1

Solving for % in Eq. 4.2.2 and substituting it into Eq. 4.2.3 gives the diffusion equation
for evqlution of the orientational distribution function y(x) (Bird et. al., 1987)

W 1w 9 oy 1 ‘
i t i§1 gx—i'(kT x Xip) - 2%+ X))y - " KX; ) (4.2'-4)

Due to its linearity,. a separation of variables and a normal coordinate transformation
applied to the diffusion equation yields a solution for the orientation distribution function
y(x(t)) (not shown here since the solution is rather complex). The orientation distribution
function determines the likelihood that a given chain will take the configuration x1, X2, ...
-Xj, ...XN. Furthermore, for each configuration x1, X3, ... X;, ...XN, the force in each
subchain can be calculated. From this information, the average (i.e. over all possible
configurations) force due to all polymer subchains passing though a given plane yields
the contribution of stress due to the polymer molecules * . Adding the contribution of

stress due to the solvent yields the following constitutive law:

N .
' 1 .
o-ij(t) =p 811 + ns le(t) +J- nkT (2 }\'_e {t ’t)/)\.m) B;J(LT) dr (4251)
- m=1 *m

with the relaxation times A given by

A EN 12
M 24 KT sin*(mm/2Ny)

k=1,2...N (N =number of beads) (4.2.57)

*Eq. 3.14 derived by the virtual work method can be used to provide the stress by performing a coordinate
transformation from x; to (6;, ¢; ). Such a transformation converts the configuration distribution y(xj) to the
orientation distribution C (6,9 ).
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the Finger tensor Bij(t,T) is given by the relation

ox;(t) an (t)
0xk(1T) 9x(T)

By(t,7) = (4.2.53)

such that x;(t) is the current position and xy(7) is the position at the previous time T,
djj is the rate of deformation gradient, T is the viscosity of the fluid, n is the number of
polymer molecules per unit volume, N is the number of monomers per subchain, and 1 is

the length of each monomer link.
4.2 b Polymer Melts

The 'expression for stress (Eq. 4.2.5) has been»shown to be successful in .
describing the behavior of dilute polymer solutions shown in Fig. 4.2.2. Because the fluid
is assumed to be dilute, such that polymer chains do not interact, the friction applied to
the beads is only due to the solvent. At very short times (See Fig. 4.2.2) the same bead
spring model is also used for polymer melts. In this case the friction applied to the beads
is due to the surrounding polymer chains and is treated by the same exact equations as
described above for the solvent. The flow of surrounding polymer molecules around the
beads of a bead spring chain seems to be more complicated than the flow of the solvent.
Nevertheless, this is the simplified treatment made by rheologists in much of the
literature (Bird et. al., 1987; Doi and Edwards, 1986; Ferry, 1981; etc.) (Bird, 1987 has
incorporated an additional anisotropic friction coefficient called the link tension
constant). To characterize the behavior of the melt at longer times additional mechanisms
must be considered. The reptation theory develpped by Doi and Edwards (1978) and to be
described here is the accepted explanation for the plateau and terminal behavior of

" polymer melts and concentrated solutions. In a crosslinked rubber, the dynamics for the
relaxation process at the éarly stages of incipient deformation (at very short times in Fig.

4.2.2) are basically the same as that for the uncrosslinked polymer melts.
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According to Doi and Edwards (1978) "tﬁe major factor governing t!le motion of a
polymer in a network is the effect of entanglements i.e., chains cannot pass though each
other". The portrait of an entanglement network given (Fig. 4.2.5 a) is of a molecule
(crosslinked or uncrosslinked) constrained by surrounding polymer chains ( seen as dots
in Fig. 4.2.5 a). The constraints of the network are idealized as a tube or cage
surrounding the molecule (Fig. 4.2.5 b) . The center line, ‘called the primitive chain,
répresents the average location of the molecule, since the molecule is constantly
"wriggling" due to thermal fluctuations. The dots shown in Fig. 4.2.5 (a) and (b) actually
represent the primitive chains of the surrounding molecules. The force in the chain is |
assumed to be along the primitive chain. Doi and Edwards give mathematical motivation

for the tube and priinitive chains , the concepts are merely illustrated here. -

(@ | )

Fig. 4.2.5 (a) Schematic of a polymer chain in entanglement network where dots

represent surrounding chains. (b) The idealized constraining tube and the primitive
chain (centerline).

For the uncrosslinked melt, the tube confines the chain, otherwise the chain would be free
to ro‘am anywhere in the network and thereby violate the constraints of the surrounding
chains. The process of confining the chain in such a tube reduces the configurational
entropy and therefore requifes a force to majntain the tube constraint even when the
polymer melt is in equilibrium. This force is applied along the tube by the surrounding

network (sort of a distributed force) and in the equilibrium state amounts only to a
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hydrostatic stress since the chains are randomly oriented. The tube is assumed to deform
affinely while the chain inside is able td rearrange itself within and assume its most
favorable position (i.e. relax, more about this later).‘

The tube model requires the calculation of a confinement force which is difficult.
Td simplify the model, Doi and Edwards further idealized the problem using the so called
slip link model (Fig. 4.2.6 a) (see also chapter on elastic entanglement model). The slip
links force the uncrosslinked polymer chain to maintain the confines of the tube. A
fictitious force is applied to the ends of the chain which represents the effect of
confinement. For example, if this force is not applied, the chain will escape from the slip

links (i.e. escape from the tube) (Fig. 4.2.6 b).

F=3kT
eq -—1@72

(a) . (b)
Fig. 4.2.6 (a) The slip link model of a confined chain with forces applied at ends. (b) The

behavior of a chain if no force is applied at the end.

In the undeformed state, each slip link is assumed to be separated by some characteristic
distance " a " (Fig. 4.2.6 a). Doi and Edwards (1978, \1986 etc.) considered this distance
"a" ameasure of confinement. Marrucci (1979) considered it the distance between
entanglements. A Gaussian subchai{p with N, monomers (or statistical links) each of
length 1 spans each slip link such that a = VN, 1 is the mean square length of the chain

and when undeformed (Fig. 4.2.6 a) the force is:

g 3KT _ 3kT _3KT
eq N012 *fNo_l a

(4.2.6)
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As with the tube the slip links are assumed tb defbrm affinely and the chain is able to
slide freely through the slip links until it reaches its most favorable position.

The slip links play the sarﬂe role as the entanglements (Fig. 2.2.1) shown in the
presentation of the elasticity model. The entanglem.entsv were used by Marrucci and are
simpler to conceive. It is not that important which conceptual device is used, they are
both used to force the chain to deform with the surrounding network as opposed to a non-
entanglement model where a chain between crosslinks is only affected by relative motion
* of the crosslinks. The main difference between the tube model and the slip link model is

how the force in the chain is calculated. In the tube model, the entropy of a polymer. chain
bounded by a tube of a given configuration is calculated in a sophisticated manner. In the
slip link model the equilibrium force is determined from the stretch of the subchain with
N, monomer links between adjacent sliplinks. This is what was done in the development
of the elasticity model and is much simpler than the tube model.

Cohsider the chain in Fig 4.2.7 (a) and the detailed portion ABCD (Fig. 4.2.7 b) in
its equilibrium state. In order to chafacterize its dynamic behavior the chain can be

further subdivided giving a Rouse bead spring model of the chain (Fig. 4.2.8).

_ 3KT

Feq mm/q

o

(a)

Fig. 4.2.7 (a) Long polymer chain in equilibrium The dotted lines are shown to
illustrate the tube. and the solid line is the primitive chain. |
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(b)

Fig. 4.2.7 (a) Long polymer chain in equilibrium The dotted lines are shown to
illustrate the tube. and the solid line is the primitive chain. (b) Polymer section
ABCD in. The force is calculated by the slip link method (with slip links at AB,C
and D). ' '

B

A
(a) | (b)
Fig. 4.2.8-(a) The AB portion of the chain in Fig. 4.2.7 (b) A bead spring
type representation of the AB portion. The entire chain of Fig. 4.2.7 (a)
may be comprised of the Rouse bead chain models.

Don't be confused with the subchains used for the Roﬁse bead spring model and those
used for the entanglement models. The subchains in the entanglement model représent
excursions of the chain and tube (i.e. AB, BC, CD in Fig. 4.2.6) as it wanders through
the entanglement network. Rouse subchains would be a further discfetization of the -
chain; sort of subchains of a subchain in other words.

The following five steps describe the evolution of the dynamics of a chain during

the relaxation process after the application of a single step strain. The relaxation curve in
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Fig. 4.2.9 illustrates the chronology of the events during the relaxation process. As will
be discussed, it is the first three steps "force equilibration” that also occur in crosslinked
polymer chains. Doi and Edwards give only a qualitative description for the force
equilibration process. In fact they only consider the disengagement process (e.g. Step 5 in

Fig. 5.2.9) when deriving their constitutive law.

Step 1.

When a step strain is applied to a polymer melt or rubber in equilibrium , the
viscous forces of the surrounding molecules transport every portion of the relaxed chain
ABCD (Fig: 4.2.7) affinely into a new configuration AB'C'D' (Fig. 4.2.10) as was the |
case for the polymer solution. The deformed chain is not in equilibrium. At this point the
diffusion equation derived using the Rouse bead spring model (Fig. 4.2.3 ar;d 4.2.8)

would be the appropriate means for characterizing the relaxation of chain.
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Fig. 4.2.9 Approximate sequence of events during relaxation process of a typical

polymer melt. Step 1. is deformation. Step 2 and 3 is force equilibration. Step 4
is chain retraction and step 5 is the chain disengagement process. '



Fig. 4.2.10 The chain ABCD after affine deformation. Sections AB and CD
have lengthened while BC has shortened.

According to Doi and Edwards (1986), the Rouse bead model (Fig. 4.2.3 and
4.2.8) could be used for times t < Te where Te" is the time where tube constraints become
apparent. Unlike the Rouse chain in the fluid, the caged chain is not allowed to assume-all
| configurations™. At this point the chain motion in thé direction transverse to the tube has
somewhat attenuated. This condition is shown schematically. in Fig. 4.2.11. For example,
in very simple terms, if section A'B' in Fig 4.2.10 was comprised of Rouse subchains,
they would be highly extended since A'B' has yet to reconfigure. A short term

reconfiguration is achieved by rotation of the subchains toward the direction of stretch .

Fig. 4.2.11 Short term rearrangement of chain such that diffusion of the chain

transverse to the tube has diminished.
This short term reconfiguration is shown schematically by the flat appearance of the

chain segment A'B'. This amounts to a "local" relaxation process. The force in the

* A rough calculation for this time is made by DeGennes (1971)

** This is why Eq. 4.2.5 is not valid for the whole relaxation process.
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primitive chain still varies along the length of the chain so that more relaxation is still to
occur. A "one dimensional" diffusion process occurs in the next step to equilibfate the

force.

Step 3.

At this point the majority of the relaxation process is provided by diffusion along
the length of the tube. During this process (for times Te >t > Tp** ) monomers from the
compressed chain segment B'C' slide through the slip links in order to provide force |
equilibration along the chain. In actuality, the process of step 3 begihs to be evident
before the conclusion of step 2 especially near the points B' and C'. The equilibrated
chain is shown schematically in Fig. 4.2.12. The force along fhe chain is constant and is
calculated in identical fashion as that given in the development of the elasticity model
(Section 2). Since the chain in Fig. 4.2.7 (a) is assumed to go through excursions in many
different directions of three dimensional space, the stretch of the deformed contour length

is given to be (A) and the force for the Gaussian chain is calculated to be that shown in

Fig. 4.2.12.

Fig. 4.2.12 Polymer chain after force equilibration along length.

Up to this point the behavior is much the same for the crosslinked and uncrosslinked

polymer chains. Although the concepts given for the three steps shown are outlined by De

** 1R is the longest Rouse relaxation time calculated by Eq. (4.2.57) at k = 1. It is shown by Doi and
Edwards (1986) that the one dimensional diffusion process occuring along the length of the tube will have
the same relaxation time as the three dimensional relaxation process given by Eq. (5.2.51)
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Gennes (1971) and Doi and Edwards (1986), the details on how to implement these
stages into a finite deformation constitutive model are not given nor how the transitions
between the steps could be handled. These authors were more concerned with the
subsequent chain retraction and disengagement process for the uncrosslinked chain since
these are the mechanisms that provide the plateau and terminal regions of behavior in the.

relaxation curve (Fig. 4.2.2) for the polymer melt. Doi and Edwards (1986) consider only
| the diéengagement process outlined in steps 5 when they construct their finite strain

constitutive model for polymer melts.

Step 4.

If the polymer chain is not crosslinked the next process that occurs is called chain
retraction. The deformed version of the entire chain shown in Fig 4.2.7 (a) is shown in

Fig 4.2.13 after force equilibration (Step 3) has taken place.

Fig. 4.2.13 The entire deformed chain after force equilibration

Chain re&action is the diffusion process such that the primitive chain returns to its
equilibrium contour length. As the chain retracts, it slides along its length. In fact it is
required that any motion of the chain must occur such that the chain remain in the tube
except at the ends where it is free to take up new positions. This phenomenon is called
reptation. The retracted éhain is shown in Fig. 4.2.14. The force along the retracted chain

is the equilibrium force since the chain has returned to its equilibrium contour length. The



time that the chain has reached its equilibrium contour length marks the beginning of the

plateau region in the stress relaxation curve (See Fig. 4.2.2 and 4.2.9)

Fig. 4.2.14 The deformed chain after chain retraction. The chain retracts such that it slides
along its contour (i.e. reptates). The fine dotted line represents the obsolete portion of
tube. | ‘ ‘

Step 5

Despite the resumption of the equilibrium force of all the chains in the network,
the stress tensor is not isotropic. The chain sections are still highly oriented due to the
deformation, hence the anisotropy. At this point the diffusion process occurs such that the
chain slides back and forth along its length (reptation) becomes recognizable. With each
excursion at the chain ends, the chain forms new sections of tube as it winds it way
through the surrounding network (Fig. 4.2.15 a, b, ¢). Clearly this mechanism is present
throughout the first four steps, but since the process occurs slowly, it is negligible at the
early times. Because of the random motion of the chain ends, the average orientation of
all the new chain portions is isoﬁopic; therefore, the‘ remaining portion of the original
tube is the sole contribution to the anisotropy and the sole contribution to the anisotropy
of the stress tensor. In Fig. 4.2.15 (a), the chain slides to the left forming a new portion
of tube and leaving a vacant portion (shown by fine dotted line). In Fig 4.2.15 (b) and (c)
the chain slides two successive increments to the right. The length of the increments and
their directioﬁ is random. The shaded poition of the tube (4.2.15 a, b, ¢) indicates the

original tube before the chain began to escape. For all the polymer chains, only the length
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of chaiﬁ that resides in the oﬁginal tube contributes to the stress tensor since the
orientation of its segments remain anisotropic. Eventually the length of original tube
vanishes and the stress becomes isotropic and the polymer melt is in equilibrium. This
process is call chain disengagement and is the mechanism that governs the behavior in

the terminal zone of the stress relaxation curve.

(a)

Fig. 4.2.15 (a) Polymer chain after an incremental motion towards the left. The
lightly dotted line represents the portion of tube vacated after the incremental
motion. The shaded portion represents the length of chain occupying the

original portion of tube.

(b)

Fig. 4.2.15 (b) Polymer chain after an incremental motion towards the right.
Notice how the new tube sections only appear at the end of the chain such
that the chain slides along its length. The lightly dotted line represents the

. portion of the tube vacated after the incremental motion.
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Fig. 4.2.15 (a) Polymer chain after another incremental motion to the right.
At this point the a large portion of the original tube (shaded reglon) has
diminished.

The above steps 1-5 outlined the relaxation process occurring during a single step -
strain. It is easy to derive the eqﬁation for the stress during this relaxation process
considering onlyvthe effects of disengagement. If each polymer chain is assumed to have
ng subchains prior to the step strain, each will have ng / (A) subchains after chain
retraction (Step 4) occurs due to shrinking of the polymer chain inside the stretched tube.
Furthermore, the force in the chain upon retraction is merely the equilibrium force
3KT/NNol (cf. Eq. 4.2.6). Replacing n¢ with n ng/ (A) (n is the total number of polymer
chains), 1, with the original subchain length VN, 1 (cf. Fig. 4.2.6), and f(A) with
3kT/VNol in Eq. 3.19 yields the equation for the stress upon chain retraction but before

disengagement,

-n"S./— 3KT 1 sin® ’
%in™ ) Xy aXJJ MMy 5 = dodo+ps, @27

During the disengagement process the ends of the chain form new tubes which on the
average are isotropic; therefore, it is only necessary to include the amount of chain length

remaining in the original tube when calculating the stress tensor. The quantity u(t) (4.2.8)



represents the fraction of chain remaining in the original tube, on average, at time t after
loading and is calculated statistically by Doi and Edwards (1978) for the step Strain to be,

H(t) =p2 ———28 e~ (P*U/%) where 14 =

2
EndNoD)”
Jodd T2ty 2

(4.2.8)
where  is the coefficient of friction between the chain and the tube. The function L(t)

represents the relaxation function and is appended to Eq. 427 to give the stress as a

~ function of time during the disengagement process;

Gy 9%, 9%, [[ :
o0, =HO 73 3= 3] | McMu g SBOd0do+ps, (429

where Gg = 3 kT nns. Norrhally the quantities for 14 in (4.2.8) are not known and 74 is
chosen from e);perimental results. Again (4.2.9) represents the stress due to a single step
strain after the retraction process has occurred. The constitutive law for arbitrary flow
histories at rates sufficiently low that effects only due to disengagement are noticeable is

given by Doi and Edwards (1978) to be*,

! pi

ox®); Xy [ | myemy g |
). =G t— SINY 4g dp dg+p &. 4.2.10
O dJ” 05, 3X(1)J J weo? An 00RO (210

00

—oa

ox(t);

where ax—('c)— =Fit 1) is the relative deformation gradient and A(t,T) is the relative stretch
k ‘

such that A(t,7)2 = my Fix(t,7) Fi(t,T) my. As it turns out, when a step strain is applied,
Eq. 4.2.10 is slightly different than 4.2.9 due to the so called independent alignrﬁent

~ assumption used to derive (4.2.10). This discrepancy is small at moderate strains but
becomes considerable at large strains. Equation 4.112,7 and 4.2.10 is considered in Sections
4.8 and 4.9. An approximate form for Eq. 4.2.10 was given by Currie (1982) and is

shown in Eq. 4.9.1.

* A constitutive law for arbitrary flow histories that includes chain retraction along with chain
disengagement has yet to be developed. An equation which describes the stress during relaxation upon a
step strain and includes retraction and disengagement is available (Doi and Edwards, 1986).
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4.3 Proposed Force Equilibration Viscoelasticity Model

The first three mechanisms of viscoelasticity described above for the polymer _
melt are the same for the polymer solid and are the basis for the viscoelasticity model |
described here. Since all the chains are assumed to be crosslinked, no chain retraction
(step 4) and chain disengagement (step 5) can occur. It remains to describe the force in
the chain during its non-equilibrium stages. A compléte kinetic theory could be
developed to achieve the analysis, but this is deemed too difficult. The approach used
here to describe the non-equilibrium force in the chain is empirical. A suitable
approximation is postulated. It is unclear what effects finite extensiblity of chains have on
the viscoelastic behavior of rubber. Finite extensibility has already been incorporated in |
the equilibrium, elz;stic model given in Section. 2. Development of the viscoelastic model

- will be in the context of infinitely extensible chains. The model can be easily generalized

to the finite extensible case; at least for the equilibrium stress given by Eq. 2.4.6.
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Fig. 4.3.1 Approximate sequence of events during relaxation process of
a typical solid rubber. During step 1. the rubber is deformed and step 2.
and 3. together comprise the chain force equilibration process.
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It is useful to review the processes of relaxation considered (See Fig. 4.3.1).

(Step 1.) When the step strain is applied, friction from surrounding 'chains
transports every point (not just the endpoints) of the chain affinely into the non-
| ‘equilibn'um configuration (Fig. 4.3.2 a) At this point forces in the chain may be very
high. In fact, bonds between adjacent monomer links in the chain méy stretched
producing a glassy response. |

(Step 2.) The first stage of relaxation is méinly influenced by chain diffusion
occurring transverse to the tube (Fig. 432b)In fhjs stage, portions of the chain reconcile
their non-equilibrium configuration locally (i.e. short term reconfiguration). This occurs
~ only for a short time since the constraints of the tube disallows large scale motion in the
transverse direction.

(Step 3.) Since the tube is not straight and zigzags its way through the network,
portions of the chain may be in tension while others in compresSion. This second stage of
relaxation is mainly due to diffusion along the length of the tube until the force

equilibration achieved (Fig. 4.3.2 ¢).

Fig. 4.3.2 (a) Affine motion of entire chain. (b) Relaxation of chain transverse to tube. (c)
Relaxation along length of tube. '

A Rouse bead chain model could be used to model step one and two although it could

never capture the glassy response. After step one and two the orientational distribution
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function given by the solution to (4.2.4) would no longer be valid due to tube constraints.
A one dimensional diffusion equation could be used for step three. Instead}i‘t is merely
recognized that the forces in the chain while in the non-equilibrium state (Figs. 4.3.2 a
and b) are greater than that of the relaxed chain. Furthermore, after sufficient time the
chain will relax once force equilibration along the chain has been réached. The following

expression is used in an attempt to describe the transient force in the chain:

t

_ _3kT i dA(1)
f(t) -fe(t)ffv(t) o (M) + jG(t T) ——dT dr
S (4.3.12a)
where f?(t) = \?I\II(_:I (AMt)) and fy(t) = JG(t-T)%QdT ..

The elastic portion of the force fe(t) represents the equilibrium value of the force for a
Gaussian chain after force equilibration has been reached (the Langevin chain could also

~ be used). The viscoelastic portion of the force fv(t)>reﬂects the additional amount of force
in the chain before equilibrium has been attained.. The kernel G(t - 1) is some

experimentally determined function. It would most likely be a Prony series,

N
Gt-1) =, ciet-D/x
i

or powerb law: (43.1b)

= E
G(t-1) 1+(_t_-_1n
o

- When deformation has ceased, it is intended that fv(t) = 0 and f(t) — fe(t) after sufficient
time has passed. The form of fy(t) attempts to take into cpnsideration the affine rhotion of
the tube and the force fluctuations along the chain during the deformation process. The
relaxed chain is shown in Fig 4.3.3 (a). As deformation is applied, the tube and
surrounding network deform afﬁnely carrying the chain into non-equilibrium
configurations. Each individual section of the tube (e.g. AB' in Fig 4.3.3 b) stretches

differently depending on its orientation(8,0). Consequently, the non-equilibrium foice in
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each section of chain is influenced by the rate of stretch of the tube A(t). For example,
sections of chain in tubes which experience high stretch rates A(t) will experience high

forces since the tube applies friction to the chain. .

Fig. 4.3.3 (b) Chain after deformation. Tube sections stretch according to their
orientation (0,0). The unit vector of mag' represents the orientation of A'B'. Section A'B’
has been stretched while B'C' has been compressed.

The easiest way to illustrate the model is to use a mechanical analogy. The non-
equiiibrium force £y is equivalent to a spring and dampef element. The undeformed chain
shown in Fig. 4.3.3 (a) is shown as an assembly of these spring damp;-:r elements in Fig.
4.3.4 (a). After deformation the points ABCD transform affinely and the non-equilibrium
force can be calculated. For example the‘ force (fy)aB' (Fig. 4.3.4 b) in the deformed

segment can be calculated exactly by the following hereditary integral,
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t

fy (AR = Jklo e-(t-f)/to%dr | {4.3.2)
T 4

-00
where k is the spring constant, t, is a relaxation time, and |, is the undeformed length

(See Fig 4.3.4 a). Clearly the force in the spring damper system diminishes over time

once the deformation has ceased.

(@ Q)
Fig 4.3.4 (a) The undeformed assembly of spring dampers elements. The spring constant
is k and the damping coefficient is kt, where t, is some relaxation time. (b) The segment
AB after deformation. Segment AB length lo is stretched by a factor of A. '

The force in the chain (Eq. 4.3.1) along with Eqgs. 3.19 or 3.20 are used to
find the stress tensor. The total number of subchains n¢ = n ng, where n is the number of
polymer chains and ng is the number of subchains per polymer chain. Associating 1, with
VN, 1 (the undeformed subchain length) and using Eq. 4.3.1 for the force in the chain in

Eq. 3.20 gives the following equation for the second Piola Kirchoff stress,

S0 =nn; YNo | f j ( AL )+ f G- nPOLD 4

MK ML sin ®
AMOD) 4n

dodd+pFy,F, (43.3)

The stress can be divided into the elastic and viscoelastic contributions:
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where G‘= nng in Eq. 4.3.4 and nng YN, 1 from Eq. 4.3.3 is subsumed into the kernel
function G(t - 7) in Eq. 4.3.5. The elastic portion Sk (¢) is the Piola Kirchoff stress

equivalent to Eq. (2.2.20 a) considering infinitely extensible chains. It remains to analyze

the viscoelastic backstress.
4.4 Thermodynamic Considerations

For a Prony series kernel, it is shown in Appendix C that the viscoelastic

backstress is actually the gradient of the following scalar potential functional:

) nn v 2

‘ N
v 1 ,d?\,(@,q),’t) in ®
¥ =21 ce-(t-T o T | SIDY b 4.4.1
zﬂgfce B T2 dod (4.4.1)
) 00 o0
such that

Sk (D) = a‘P (4.4.2)

where Ex;j is the Greens strain tensor..If a power law kernel is used the summation in Eq.

4.4.1 is replaced by a Fourier transform integral over the frequency domain. Because of
Eq. (4.4.2), ¥ is the free energy functional and the constitutive law is termed

hyperviscoelastic. The rate change of the free energy PV is

Eh M) ¢
WYKL = 3E, 7 BrL + 5y (4.4.3)

and the rate of dissipation (Christensen,.1982) is deﬁned by
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It is shown in Appendix C that rate of dissipation of energy is alWays nonnegative i.e.
A 2 0. Consequently vthe constitutive law satisfies the Clausiué Duhem inequali.ty
(Eringen, 1967) for isothermal processes: ,

A =Sk - ¥V 20 (4.5.5)
Since the stress is the gradient of a scalar, a suitable approximation for ¥V will

yield a symmetric tangent stiffness matrix for finite element analysis.
4.5 Approximation of the Viscoelastic Backstress

Equation 4.3.5 cannot be solved analytically. Several attempts were ‘made to get
the best approximation. Two approximations are developed here. Both approximations
- rely on the approximation for the stretch A (shown plotted in Figs. 2.4.2-3)
(1 -2 I L (1 -312 1,
MO®)=yI/3+5 (x| Ae®-D+z (x| Aed)-3)
213 37 843 3
' : (4.5.1)
where kz(G,d)) = Mk Ckr My, the integral identities Eq. 1.16-1.19 and other similar

approximation techniques.

The first approximation is made directly on Eq. 4.3.5 and is shown in Eq. 4.5.2

12 ‘ ]
L—1(14 - 9%) 8ij Oy - 125ij Cu - %sklcij +6 511(5,'1} I G(t-1) ad;(hm Cy) dr
1 -

SY(t) =
50 =3 1
(4.5.2)
Eq. 4.5.2 is fully derived in Appendix D. The advantage of this approximation is that it
gave the best results compared to exact numerical solution of Eq. 4.3.5 using the least

amount of terms. Approximations made directly on Eq. 4.3.5 are not guaranteed to give

visco-hyperelastic forms (See Section 4.4). It turns out that Eq. (4.5.2) is not visco-
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hyperelastic and the resulting tangent stiffness matrix is not symmetric. Consequently,
symmetry is sacrificed for accuracy. |
The second method approximated the free energy functional Eq. 4.4.1 and is
shown for the case of a single exponential kernel in Eq. 4.5.3

. ‘ 2
Vo3 t-T)/t, d 112
¥ 56 U e(t-1) 051—(11(1)) dr) +

- d . d ) _
.2% J J 2t-T-M)it, d_»c(ll(r) 12 Ckl(r)) E(Il(n)_ 12 Ckl(n)) drdn ( 4‘.5‘3)

Eq. 4.5.3 is derived in Appendix D. The stress is the gradient of the free energy function
(4.5.3) with respect to the Green strain and is shown for the case of a general Prony series

of a power law kernel in Eq. 4.5.4

t

S0 = #/2 3 80 - Il&j Cia + (8t &5 + Bikajl)]f G(t- 1) ad{(Iillz Cy)dt  (4.5.4)
R

101}

oo

vThe advantagé of this approximation is that it satisfies the Clausius Duhem inequality,
and yields a symmetric stiffness matrix. It will be shown that this method is not as
accurate as the first method. Using an additional term for the approximation of A (Eq.
4.5.1) will give a more accurate approximation for the stress, but would include eighth
order tensors in the expressidn and would be too unwieldy.

To determine the efficacy of the approximations, a single exponential kernel (Eq.
4.5.5) was used (relaxation time t, = 0.75 minutes and ¢ = 1 MPa) and both methods were
compared to the numerical solution of Eq. 4.3.5.

G(t)=celto=] 43t (4.5.5)

The numerical solution of Eq. 4.3.5 was provided by a Gauss point integration simﬂar to
the one made for the elasticity equations in Section 1 and Appendix A. An additional

numerical solution to the hereditary integral included in Eq. 4.3.5 is found using a



recursion algorithm at every Gauss point. As with the numerical solution made in
Appendix A the spherical domain is mapped to a rectangular domain and thén
- discretized. Unliké before, the adaptive algorithm was not used since the strain history
was required at the Gauss points. Typically 20 panels with 6x6 Gauss points were found
to be rnore_than adequate to perform the integration. The uniaxial stretch history shown in
Fig. 4.5.1 (a) was used to evaluate the two apprbximations against the exact numerical
solution with the results shown in Fig. 4.5.1 (b). The first method correspondihg to Eq. .
4.5.2 is called the direct approximation while the second method (Eq.v4.5.4) is called the
symmetric approximation. It is seen that the symmetric approximation at A = 4 is off by
almost 15% while the direct is off by 8%. |

The direct method is also compared to the numerical integraﬁon for a ramp
loadiﬁg in shear (Fig. 4.5.2 a). The results for the shear stress are shown in Fig. 4.5.2 (b) -
and the results for first and second normal stress are shown in Fig. 4.5.2 (c). The direct
method gave good approximations for the both the shear stress and the normal stresses up
to shear a shear of 2. The direct method was used to generate all the results given ih

Section 4.6.

1 T T T T
0 1 2 3 4 5 6

time (minutes)

Fig. 4.5.1 (a) Axial stretch history used for evaluation of approximations
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Fig. 4.5.1 (b) Comparison of approximation methods to numerical integration

of Eq. 4.3.5 for axial loading shown in Fig. 1.
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Fig. 4.5.2 (a) History function for shear loading

73



0.25 ' | l l ! I 1

0.20 - L .
0,, numerical integration
0,, direct approximation
<015
a¥ T
=)
o 0.10 -
0.05
0.00 ML I T 1 I I I .
0 0.5 1 1.5 2 25 3 3.5
time (minutes)
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Fig. 4.5.2 (c) Comparison of approximate normal stress to numerical
integration of Eq. 4.3.5 for shear loading shown in Fig. 4.3.3.
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4.6 Comparison of Force Equilibration Viscoelastic Model to Experimental Results

A literature search was made to find published finite strain viscoelastic data for
unfilled crosslinked rubber. Some of the data found is listed in the following articles: T.L
Smith (1962,1969); Bloch, Chang and Tschoegle (1978,1978); McGuirt and Lianis
(1969, 1979); Goldberg and Lianis (1970); Yuan and Lianis (1972); Scholtens and

Leblans (1986); L.J. Zapas et. al. (1965, 1966). More published data is available; most of

it was published by the authors given in the previous list. Most of the data is for uniaxial
relaxation and stretching at a constant stretch rate. Goldberg and Lianis (1970) and Yuan
-and Lianis (1972) are the only articles found with data relating to shear deformation.
Zapas ( 1966) and McGuirt and Lianis (1970) include some biaxial relaxatioln data.

In the following, unpublished data by Dafalias and data by Bloch, Chang and
Tschoegle (1978) is used to evaluate the force equilibration model. It must be mentioned
that the forée equilibration model was based on the assumption that the majority of the
chains in the network are crosslinked. It is realized that IIIOSt‘ rubber would probably not
meet this stipulation. Nevertheless, in developing the model it was hoped that the ideal
conditions would prevail and that additional viscoelasticity due to other effects could still
be captured successfuily.

The force equilibration viscoelastic model is used to simulate unpublished shear
relaxation and cyclic shear data from Dafalias. The chemical properties of the rubber
were not made available by the ‘proprietor. The model is the sum of elastic and
viscoelastic contributions to the stress. :
i= cs‘fj + civj +p Sij , 4.6.1)

where the elastic portion of stress is defined is:

.‘, 3
3G 4 (BL12+ )
10 I 3/2 \/ 3 I 2\) 3
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and the viscoelastic second Piola Kirchoff stress is:

L2 ‘ ]
L—1(14 - 9;—;—) 8i Okl - 125ijCk1 - %5klcij +6 8ik6le f G(t-1) ﬁ(ﬁm Cy) dt
1 oo

5= 35 |

(4.6.3)
The viscoelastic Cauchy stress is found by the transformation Gi‘g = Fix Sg1 FjL where
Fik is deformation gradient. In order to model data, values for the rubbery modulus G and
the number of links between entanglements must be chosen. Furtherrhore, a relaxation
'_ function G(t) must be chosen. Data from the shear relaxation test provided by Dafalias is
shown in Fig. 4.6.1. A step shear strain Y= 1.1 was applied to a thin walled cylindrical
sample over the period of 5 seconds after which relaxation occurred. The following

constitutive parameters were used to model the experimental relaxation curve:

G =.627 (MPa)
No = 38 .
G(t) = 28.1 e’4 + 0.135 e U5x10° 4 0.135¢-U4x10°  (MPa) where time is in seconds

The data is also shown using a log-log plot in Fig. 4.6.2. Examination of Fig. 4.6.2 'sho_ws
that the stress in the sample has yet to relax. Results from a cyclic shear experiment |
|Y Imax = 2 along with the simulated results using the above paraméters-are shown in Fig.
4.6.3. The rate of shear was ¥ =0.01335 5! such that it took 150 sec. for the shear strain
to go from O to 2. It is seen that the experimental data is not symmetric about the
undeformed configuration due io some experimental error. Nevertheless, the simulation -
appears to give good results. The model is capable of capturing the thinning of the loop
near the undeformed configuration. The amount of upturn in the curves at such low

strains seems rather unusual.
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Fig. 4.6.1 Experimental relaxation data along with simulation. A shear of y

= 1.1 was applied to a cylindrical sample and allowed to relax. (data from
Dafalias unpublished)
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Fig. 4.6.2 Relaxation data and simulation for step shear y= 1.1 plotted in

log-log format. Notice that the stress over the time period considered has
yet to fully relax.
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Fig. 4.6.3 Cyclic shear strain for strain rate ¥ = 0.01335.

A particularly low value of N, (N, = 3.8) was used to captuire the upturn. One must
remember that in strict terms Ny does Vnot really represent the number of monomers
between entanglements, but instead represents the number of statistical links due to steric
hinderances between bonds of adjacent monomers. Nevertheless, Ny is ridiculously low.
This is probably due to strain induced crystallizétidn occurring. It is hard to determine
this precisely since the chemical composition of the elastomer was not divulged.

Finite strain uniaxial data from Bloch, Chang and Tschoegle (1978) is shown in
Figs. 4.6.4 - 4.6.7. The experiments were performed on SBR rubber samples. This rubber
is typically used for automobile tires due to its toughness and is probably the elastomer
most often studied. In Fig. 4.6.4, data for uniaxial stretching at three different stretch
rates is shown. The stress 'f' in Fig. 4.6.4 is the force per undeformed area. The material

parameter's and relaxation function used to model the data are the following:



G =273 (MPa)

N, = 50

G(t) = 150 (MPa) where t, = 1x10-5 minutes
T 1+ (t/ 1x10-5)04 2T o~

The samples were'stretched‘at a constant rate such that A(t) = 1+ r t with r = 0.011 min."1,
0.442 min."1, and 4.42 min.-!. The data was fit as best as possible using the proposed
viscoelastic model. The method seems to be ineffective in capturing the large amount of
curvature apparent in the experimental data. The failure of the method is not due to the
choice of parameters of the model, but is an inherent trait of the model. Different kernels
for the viécous stress could not reproduce the amount of negative curvature observed in
the data. -

The Cauchy stress for the same data is plotted in Fig. 4.6.5. The difference in
curvature is particularly apparent in this plot. Whereas the simulated results are concave
up and then proceed as straight lines, the experimental results are just straight lines. In
fact, for much of the other data surveyed the Cauchy stress plots are coﬁcave down up to
a stretch of about two before proceeding in a straight line.

It is assumed that at r = 0.0011, the experimental data in Fig. 4.6.4 and 4.6.5 is
mostly elastic (at r = 0.0011, it takes 21 hours to stretch the safnple to A = 2.4) The stress
atr = 0.0011 is subtracted from the stress at r = 4.42 and 0.442 and plotted in Fig. 4.6.6
(e.g. 6Y =OCr =442 - Or=0.0011)- The stress 6V in Fig. 4.6.6 is basically the viscoelastic
Cauchy backstress ( i.e. stress/deformed area). The backstress for thé proposed model is
concave up while the experimental backstress appears concave dowﬁ. |

Another useful perspective is provided by the Mooney stress piots shown in Fig.
4.6.7. The behavior at A = 1 is usually disregarded due to experimental error and small
strain effects. Examinétion of the experimental data in Fig. 4.6.7 reveals that the viscous
portion of the stress (i.e. the difference betWéen the r=4.42 and r=0.001.1 curve) is more

profound at the small strains and that the experimental curves for the different rates
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Fig. 4.6.4 Force per undeformed area for three different uniaxial stretch
rates. Experimental data taken from Bloch, Chang and Tshoegle (1978) -
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Fig. 4.6.5 Cauchy stress for three different uniaxial stretch rates Notice the
concave upward nature of the simulations compared to the experimental
. data. (data from Bloch et. al. 1978)
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F1g 4.6.6 Viscoelastic 'backstress' for r = 4.42 and r = 0.442. Stress is plotted
as force per deformed area (i.e. Cauchy) (data from Bloch et. al. 1978)
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Fig. 4.6.7 Mooney Rivlin plot. (data from Bloch et. al. 1978)
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. Fig. 4.6.8 Cyclic axial stretching at constant rate * r. (data from Bloch et.
al. 1978) (a) Plotted on time scale. (b) and (c) plotted by stretch.
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appear to converge as the stretch increases. Apart from the behavior near A =1, the
curves for the proposed model are parallel. It is seen that the Mooney plots reveal a
discrepancy in the elastic stress. This has been noted by Gottlieb et. al. (1983) for the
elastic entanglement model used, but this discrepancy is not serious when the data is
plotted using the Cauchy stress and force/undeformed area. This discrepancy becomes
even less apparent when finite strain effects become apparent as was seen Section 2.
Additional data ffom Bloch et. al. (1978) with simulations for axial cyclic loading
" are shown in Figs. 4.6.8 (a), (b) and (c). Again the stress f used in plotting is the force per
undeformed area. These plots naturally reflect the same discrepancies as seen in Fig.
4.6.5. Evaluation of Figs. 4.6.5 - 4.6.8 show that the model clearly has the wrong strain
dependence. Possible causes behind the models inability to simulate the experimental

data are discussed in the following sections.
4.7 Evaluation of Results

The proposed model appearéd to give good quantitative and qualitative results for ‘
the shear relaxation and cyclic shear tests. Aétually the cyclic shear data appears to be
different than that seen from tests perform on filled rubber bearings (Kelly 1990). In
Kelly's tests, the loops do not thin near the reference configuration. It is hard to say
whether the loops of an unfilled rubber always experience such a large amount of
thinning. It is recognized from Fig. 4.6.8 that the loops in cyclic axial loading thin-
slightly at the reference configuration. Surprisingly, no other finite strain cyclic shear
results were found in the literature. Some date for monotonic constant rate shear was
| published by Yuan and Lianis (1972). Their test were not performed at sufﬁciently
different rates and hence did not reflect significant viscoelastic behavior. Results for
shear relaxation were published by McGuirt and Lianis (1970). The models ability to
simulate the cyclic shear is inconclusive, particularly in view of results from axial stretch

tests.
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It is instructive to consider additional published constant axial stretch rate data
Experimental results given by Smith (1962) and Scholtens and Leblans (19é6) are shown
in Figs. 4.7.1 and 4.7.2. Both figures plot the Cauchy stress verses stretch for different
stretch rates* Whereas the Cauchy stress;plots of Tschoegle's (Fig. 4.6.5) test results are |
nearly straight linés, Figs. 4.7.1 and 4.7.2 show a significant amount of negative
curvature at initial stretching. McGuirt and Lianis (1970) published data for uniaxial
stretching at a constant rate (2 curves at about the same rate) and the results appeared
similar to that of Bloch et. al. (1978). It‘ is hard to generalize the results seen in the
published data, since there are many variables involved (i.e. molecular composition,
molecular weight, amount and method of crosslinking, témperature, etc). It v'does appear
that the positive curvature produced by the force equilibration model (Fig. 4.7.5) is not
normal.

The constitutive model is clearly incapable of capturing the Qualitaﬁve nature of
the rubber in constant stretch rate loading. There are fnahy possible reasons béhind the
inadequacy of the model. The deficiency of the mode! is most probably due to the fact
that much of the viscoelasticity occurring during a constant strain rate test is due to
imperfections in the network. At the outset it was mentioned that these effects are not
considered in this model. It was assumed that the network was perfect. Near perfect
networks can be synthesized (Mark and Erman, 1988), but are probably more elastic (i.e.
less viscous) than the rubber used in the gxperiments coﬁsidered here. Network
imperfections take the form of dangling chains and sol fraction. Dangling chains are.
chains which are not crosslinked at both ends and sol fraction are chains which are not
crosslinked at all. Both these types of chains would experience the effects of chain
retraction and chain disengagement described in section 4.2. During relaxation, the

effects of chain retraction and disengagement mainly occur after force equilibration.

* The EPDM rubber in Fig. 5.7.2 was known not to be highly crosslinked whereas the SBR in Fig. 5.7.3
was at -34° C. (there is not a lot of published data)
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Fig. 4.7.1 Cauchy stress for constant axial stretch rate experiments on SBR
vulcanized rubber. Stetch rates range from 0.00889 - 8.889 min -!.The stress
ordinates are displaced A to enable distinction of curves (1 MPa =1 N/m?)
Data taken from Smith (1962).
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Fig. 4.7.2 Cauchy stress for constant axial stretch rate experiments on EPDM
vulcanized rubber for different stretch rates (data taken from Scholtens and
Leblans, 1986).
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* These network imperfections cause the relaxation which occurs after long times. Their
are some small strain viscoelastic theories for solid rubber which include thé effects of
the'dangling chains and unattached chains (Gaylord et. al.‘, 1986; Curro et. al., 1985;
Curro and Pincus, 1983). Because they are small strain theories, they only consider the
relaxation times and not the strain dependence given by the reptation theory. The
relaxation times used here to model the experimental data are higher than realistically
expected for force equilibration to occur. The relaxation time for force equilibration to
occur will be slightly less than the longest Rouse relaxation time (Doi and Edwards,
1986). Thc longest Rouse relaxation time can be calculated by Eq. 4.2.5; withk =1 (i.e.
the longest relaxation time) if the values of the necessary parameters are known. These
values are usually not known, but typical magnitudes range from 10-2 to 10! seconds
(Ferry, 1981) depending mainly on the molecular weight of the rubber (i.e. higher
molecular weight rubbers have higher relaxation times). These times are lower than that
used to model the results here. To simulate the relaxation curve given by Dafalias (Fig.
4.6.1) relaxation times of 4, 2x103 and 4x104 seconds were used. The relaxation function
used to simulate the axial stretch data is shown in Fig. 4.7.3. It shows relaxation
occurring well beyond the normal Rouse relaxation times. For many solid rubbers,
relaxation occurs at times much higher than that given by the Rouse relaxation time. The
high relaxation times seen in the data can probably be attributed to the unattached chains.
~ For polymer melts, investigators such as Doi, Edwards, Bird, Graessely, Wagner and
others do not emphasize the force equilibration process and concentrate on the chain
retraction and disengagement process. Of course these affects are much more profound in

polymer melts.
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Fig. 4.7:3 Relaxation function used to model uniaxial constant stretch rate

data in Section 4.6. ’ .

Again, the model was predicated on the idea of a perfect network. It was assumed
that the majority of the network was crosslinked and effects due to imperfections would
not be very apparent. It was hoped that by applying high relaxation times, despite the
theoretical conflicts, effects due to non-ideal conditions could still be captured. Tﬁe
effects were not captured and the inadequacy of the model is manifested in the strain

dependence it predicts.
4.8 Two Network Theory

The strain dependence for the chain disengagcment process is different than that
. of force equilibration. The so called "fixed network" theory of polymer melts given by
Doi and Edwards (1978 and 1986) and outlined‘ in Section 4.2 éssumes that the tube and
the friction it applies are the only factors which influence the behavior of an unattached
polymer chain. The tube is deformed affinely by the macroscopic defonnatidn and new
tube sections are formed randomly. The "fixedity" of the network implies that relaxation

of the surrounding network does not affect the kinematics of the tube or the growth of
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new tube sections. One could imagine a more complex model where relaxation of the
surrounding network would cause the tube to straighten or inhibit the growtfl of new
tubes. A crosslinked chain would also be influenced by the tube but would not reptate.
The fixed network theory assumes that chains and tubes are treated independently from
the surrounding network. A network which includes both crosslinked and unattached
chains is seen in Fig. 4.8.1. Since the "fixed network" theory assumes that the chains
behave independently, the stress due to crosslinked chains " 6 " and the stress due to

unattached chains " oy " could merely be superimposed i.e.

6= O +0 ' 4.8.1)

NN,

Fig. 4.8.1 A network of crosslinked and unattached chains. The crosslinked
chains are shown in bold. Some of the unattached chains are crosslinked at

one end while some are not crosslinked at all.

All the elasticity effects would be attributed to the crosslinked chains. The stress " 6y "

would be strictly viscous and would not contribute to the equilibrium stress. The "two

network” model would be both a solid and a fluid. The crosslinked network will always

retain its "memory" of the undeformed reference configuration while the fluid phase will

become isotropic after flow has ceased due to the disengagement process.
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The qualitative effects of unattached chains are assessed in the following for a
constant axial stretch rate deformation. The constitutive equation which cdl;siders the
effects due to the disengagément process is shown in Eq. 4.2.10. Unfortunately there is
no equation which incorporates effects due to the retraction process for arbitrary
deformation gradibent histories. Furthermore, Eq. 4.2.10 was derived for unattached chains
and does not consider dangling chains. For this case, we will treat dangling chains the
* same as the unattached chains although they do behave differently (Curro and Pincus,
1983). For uniaxial deformation Eq. 4.2.7 can be integrated analytically (Doi and

Edwards, 1978 Part 4.) such that the equation describing the Cauchy stress is,

' 3 -1 /23
'(i Mo (1 fan 7“(“)'1) lar @82)

=Gy | ut- - _1
o dl KD T Video-1 ) 2

Ai()
M@

defined in Section 4.2. Values for g in 4.2.8 can range from 102 to 105 seconds

where A1) =

is the relative stretch, pu(t) is given by (4.2.8) and Gq = 3 kT nng as

depending on molecular weight of the polymer chains. Just considering the effects of
chain disengagement and ignoring retraction and force equilibration, Eq. 4.6.2 was used

for o and Eq. 4.8.2 was used for oy, to fit the data given by Bloch et. al. (1978). The

following parameters were chosen:

for o (same as used previously):
Ge =2.73 (MPa)

for oy:
~ Gg=0.41 (MPa)
T4 = 10 minutes

" In Fig. 4.8.2 the results for the 3 different rates r = 0.0011 min.-1, 0.442 min."!, and 4.42
min."! are shown. Again, the viscoelastic portion of stress ( &, for this case) is small for r

=0.0011. The viscoelastic backstress GV‘= Oy forr = 442 and 4.42 is shown in Fig. 4.8.3.
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Fig. 4.8.2 Cauchy stress for three different uniaxial stretch rates. Chain
disengagement model provided simulated results. (data from Bloch et. al.
1978)
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disengagement model was used for simulated results (data from Bloch et. al.
1978).



Comparison of Figs. 4.6.5-6 (force equilibration) to Figs. 4.8.2-3 (chain disengagement)
show a marked difference in strain dependence. The results using chain discﬁngagement
appear to be qualitatively better than that using force equilibration. Examination of Fig.
4.8.3 shows that the relaxation function doesn't give the proper time dependence for the
different rates. This inadeqoacy has also been reported in applications of the reptation
model to polymer melts. One reason for the discrepancy is that the derivation of the Eq.
4.2.7 was based on the assumption of monodisperse polymer chains (i.e. alllthe chains are
the same length). There are modified versions of Eq. 4.2.7 which consider
polydispersity. Wagner (1992) claims that offects‘due to chain retraction need to be
considered especially when polydispersity is included. Again, there is no molecular
constitutive model which incorporates chain retraction for arbitrary (homogeneous)
deformation histories * . It is expected that incorporating effects due to force equilibration
for both the crosslinked and uncrosslinked chains plus chain ‘retraction for the

uncrosslinked chains could give good quantitative results.
4.9 Proposed Phenomenological Model

The two network model provided reasonably good qualitative results for the
constant axial stretch rate behavior. As mentioned, the time dependence could not be
predicted by the kernel given by Eq. 4.2.8. The effect of monodisperse polymer chains
was considered to be one reason the time dependence was not captured. Another reason is
duo to the fact that Eq. 4.2.8 and 4.2.10 are not valid for the dangling chains. A solid |
rubber will have many dangling chains due to incomplete curing (Mark and Erman,
1988). It is expected that a different kernel function would yield better results. A powor
law kernel such as that given by Eq. 4.3.1 (b) would be a suitable form. An approximate

form for Eq. 4.2.10 was given by Currie (1982),

* It seems that an assumption of the chain force and rate of retraction could be made and pu‘t into Eq. 3.3.2
would provide a suitable approximation. »
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where Col = oxy () Qﬁ(_(tl |

= m axj @ is the relative Cauchy Green tensor, the invariants are I =Cj
and Itz = C;;, the kernel function is given by (4.2.8) and Gy = 3 kT nng as defined in
Section 4.2. Substitution of the power law kernel into Eq. 4.9.1 should yield good results,
Because (4.9.1) is in terms of the Cauchy stress and the relative strain tensors, it is not as |
amenable to finite element formulations as a methods given in terms of the second Piola
Kirchoff stress and the Cauchy Green tensor. Although Eq. 4.9.1 could be put in terms of
the second Piola Kirchoff stress and Cauchy Green tensor, the conversion would be

complicated. The following equation for the Kirchoff stress is proposed as 4n

approximation,
.

= Gd 0 (i 1 sin © 1 1 492
S(t)ﬂ_Jru(t_T)mﬁ(JjMKMLm 80 dodo|dr+pFGF  (492)

—c0

Although Eq. 4.9.2 is an empiricism, for a single step strain .it is the Kirchoff stress
equivalent to Eq. 4.2.9" . The quantity (A) and the integral over the orientation space in
Eq. 4.9.2 are approximated by Eq. D.8 and D.10 from Appendix D ahd substituted into
Eq. 4.9.2 giving, |

t
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Eq. 4.9.3 is used in place of 6, given by the two network theory as the stress of the
unattached chains. In order to match the constant axial stretch rate data given by Bloch et.

al. (1978), the following material parameters were used with Eq. 4.6.2 and 4.9.3,

* Eq. 4.2.9 is considered to be the more rigorous solution for a single step strain compared to Eq. 4.2.10
and especially Eq. 4.9.1. :



for o, :
Ge =2.5 (MPa)
No = 50

for oyi.e. Eq.4.9.3

G(t) = w(t) Gy =——3
(=10 G 1 +(t/1x107%)

Results using 4.6.2 and 4.9.3 with the above parameters are compared to the expefimental
data in Figs. 4.9.1, 4.9.2 and 4.9.3. Because of the kernel used to fit the data, the r =
0.0011 min-! curves in Figs. 4.9.1-2 contain a small amount of the viscoelastic stress.
Coincidentally, this produced a better fit at the slow rate after slightly reducing G, from
2.73 (MPa) used in Sects. 2.6 and 2.8 to 2.5 (MPa). The viscoelastic backstress shown in
Fig. 4.9.3 is still thé difference between the r = 4.42 and the r = 0.0011 cur\;e andr =
0.442 curve and the r = 0.0011 curve. Because some viscoelastic stress was seen atr =
0.0011, Fig. 4.9.3 is not exactly the viscoelastic backstress; but it is close. Eq. 4.9.3

appears to provide good fits of the experimental data.
4.10 Conclusions

It is concluded that the contribution of force equilibration alone is not sufficient in
describing the viscoelastic behavior of many rubbers. Effects due to network
imperfections must be considered. The rationale and possibly the methods used to
develop the force equﬂibration viscoeléstic model are not wrong, per se. It is wrohg to
attribute too much of the irreve;sible portion of the stress to the force equilibration
process. This is done by using relaxation functions G(t) and relaxation times that
exaggerate the effects of force equilibration. Realistic relaxa.tion‘ times for the force
equilibration process would be on par with the Rouse relaxation tiﬁles given by Eq.
(4.2.52). Overemphasis of the force equilibratién yields the wrong strain dependency as
~ seen by constant strain rate experiments. It would be interesting to see if the method

'proposed here was appl'icable to high strain rate experiments. For such a case, the method
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~ could still be applied to imperfect networks since unattached chains still experience force
equilibration. Nevertheless, a more physically based prediction of the,noneciuilibriurn
force than that given by Eq. 4.3.1 would be useful (the statistical mechahics are available~
for such an approach).

The "two network model" appeared to give acceptable qualitative results. A model
that combined the effects of force equilibration, chain retraction and chain disengement
shquld be considered. Such a model would be able to capture effects (i.e. time and strain
dependence) due to high and low strain rate loading.

It was expected that the mechanistic (or fnolecular) models considered here could
better serve to motivate more phenomenological models than to quantitatively model
experimental results. The empirical constitutive law presented in Sect. 4.9 was based on
the disengagement of unattached chains and provided good qualitative and quantitative

results to the experimental data.

0.60 A {
0.50 — L
0.40 — n
<
% 0.30 L
: —a— 1 =.0011 experimental
0.20 - ——6—r = .442 experimental |-
—e— r = 4.42 experimental
0.10 =t 1 = 0011 simulated B
—e 1 = 442 simulated
—a 1 = 4.42 simulated
0.00 -# , ,

T T T I
1 1.2 14 1.6 1.8 2 2.2 24

A

Fig. 4.9.1 Force per undeformed area for three different uniaxial stretch rates. The
empirical chain disengagement model was used for simulated results. (data from
Bloch et. al. 1978)
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Fig. 4.8.3 Viscoelastic Cauchy stress for r = 4.42 and r = 0.442. The
empirical chain disengagement model was used for simulated results (data
from Bloch et. al. 1978).
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Fig. 4.9.3 Viscoelastic 'backstress' for r = 4.42 and r = 0.442. The empirical
chain disengagement model was used for simulated results (data from Bloch
et. al. 1978). :
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S. FINITE ELEMENT IMPLEMENTATION

A plane strain finite element program was developed to implement the proposed
elastic-viscoelastic models. The program used a total Lagrangian formulation and a
Newton Raphson algorithm to solve the governing (geometric and material)' nonlinear
equations. The algorithm provided for consistent tangent stiffness moduli through exact
linearization of the recursion approximation of the héreditary integral such that second
order convergence was achieved. A quasi-incompressible formulation was used such that
a suitable expression was chosen for the volumetric free energy as a penalfy function. The
method exhibits incompressible behavior in the limit as the penalty parameter tends to
ihﬁnify. The details specific to this program are discussed in the following.. .

The rubber has so far been considered incompressible. The development of the
rubber elasticity model here only considered the entropic portion S of the free energy

'Y and neglected the contribution of the internal energy E where
d¥=dE-TdS (5.1)

and T is the temperature. It is known that rubber is somewhat éornpressible and does
exhibit changes in internal energy due to deformation. Most of the internal energy |
changes are due to dilation™ . Usually this internal energy contribution 'is treated
empirically and there are many postulated forms. Since, a sophisticated treatment of this
topic is beyond the scope of this work, the introduction of compressibility made here will
only be in the form of a penalty function to facilitate finite element analysis. In this case,
the material is treated to be very nearly incompressible. Considering only the elastic case

for a moment, the following form for the equilibrium free energy is used:

W(F) = Wol(J) + Wentropic(F) (5.2)

* Although at small strains this is oftén not the case (Treloar, 1958) . Some investigator have reported the
necessity of including distortional contributions to the internal energy (Peng et. al., 1972, 1975)



were Wentropic(F) js the entropic portion of the free energy given by Eq. 2.2‘.17, and
Wvel(J) is the portion of the free energy which depends on the volume ratio J and
maintains the near incompressibility constraint. Sometimes analysts make the entropic
portion of the free energy invariant to dilation by substituting the deviatoric deformation
gradient Fgey * for F such that Wentropic = Wentropic(F4..) , but this leads to an

unnecessarily complicated formulation. The following was used because of its simplicity,
weolg) =Lk @- 2= (5.3)
The constant ¢ is chosen to provide stress free conditions in the undeformed state. The
constant x is the penalty p?rameter chosen to provide near incompressibility. Many other
forms are .available: but it was found that results are rather insensitive to fhe.form when

the deformation field is nearly isochoric. Using 5.2 and 5.3 to calculate the elastic portion

of stress gives,

0.glastlc _?_ Fix (ac L( yyentropic ,_ ysyvol )) F'K = O-%ntropic + xkJ-1)-c¢) Sij

5.4)

where is Gﬁ“‘“’"ic is given by Eq. 2.4.5 or 2.4.6 divide by the volume ratio J as such,

Gentroplc G WL l(\;&) (\/‘75 (Iyl2- 3 1152/2 )Bl_] \[3 3/2‘Bi2j )
’ (5.5)

For the undeformed state, it canbe shown by replacing Fik = dik into Eq. 5.5 gives,

. . o .
0.g:jntroplc 5 0)__3/2 511 | (5.6)

- If the rubber is in equilibrium in the undeformed state then Ge'aS“C 0 so that substitution

of J=1and 5.6 into 5.4 provides the value of c:

*Fgey = J'1/3 F where F is the deformation gradient and J =det | F |
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T )

Including the contribution of the viscous portion of the stress is made as.usual,

viscous

G - Gelastlc+ G (58)
where Ge‘as“c is given by Eq. 5.4 and G‘”SC°“5 is given by the transformation:
 ofseons - < Fig Sk B (5.9)

and Sk is given by Eq. 4.5.2 (or 4.5.4). At equilibrium in the undeformed state G"‘SC"“Sz
0 so that no special consideration need be made for G"‘S°°“s Furthermore, the penalty
number K will maintain near incompressible COl’ldlthIlS for the elastic and viscoelastic
cases.

The penalty method can be implemented with a mixed formulation u‘sing a
separate pressure and d'isplacement ‘ﬁeld. But, exploiting the element equivalence as
outlined by Malkus and Hughes (1978) for finite strain formulations, a single
displacement field with reduced and selective integration is used. For the 2D plane strain

finite element program déveloped here, 4 node bilinear finite elements were used. The
stress given by the penalty function is sampled at the center Gauss point (Fig. 5.1) while

~ the remainder of the stress given by Eq. 5.8 and 5.4 is sampled at the 2x2 Gauss points.

k@-DE T

Fig. 5.1 Four node bilinear element with selective and reduced integration.

Constraint is applied by sampling penalty function at center Gauss point.

In order to achieve second order convergence, the tangent moduli Lij given by:



0S;; :

Li = 3y, : - (5.10)
must be computed from an exact linearization of the constitutive law. The process is
trivial for the elastic portion of the stress but requires numerical integration of the
hereditary integral for the viscoelastic stress. A procedure similar to that given by
Herrmann and Peterson, (1968) is used. Considering only a single exponential kernel
with relaxation time t,, the viscoelastic stress given by Eq. 4.5.2 or 4.5.2 is of the

following form:

- " eond
S;ﬁ(t): fijop(cmn)J ce T)/tnd_ﬂl:all/2 Cop) dr . (5.11)

Taking the gradieni of Sivj(t) and using the chain rule gives,

2 " eond
0= 50— | fijopCon) | ce@ =@ Code| (5.121)
oCy | U dr
— a f C ! -([-T)/[o d -1/2 C d f C a l '(t"C)/to d 172 C d
= ac_kl ijopCrmn) ce a;al op) 47 + fijop( mn)a_c‘; ce a;(rl op) dt
(5.12)

where Li‘jkl are the tangent moduli for the viscoelastic stress. The gradient of the first part

of the rhs of Eq. 5.12; is straight forward. The grédient of the second part requires
numerical integration of the hereditary integral. The following recursion relation is used

to get the value of the integral at time t from time t - At:

1-ed%

f ce- ‘)""d%(li”z(t) Cop(®) du =1, ( ) ( [0 Copl®) - (-4 Copf-A0) )

AL )
; t-ar-om, d -
+e At/toj cet-a t)kod_T(Ill’Z(r) CopM) dr  (5.13)

99



100

Consequently the gradient of the hereditary integral is approximated as follows,

0 t “t-o, d 122 ol e 3 -172
3.0 L ce d1(11 @ Cop(m) dr = to( N |0 (11 ® Cop(t))

] -t | R u '
=t ( | A ) (_ 5 Il 3/2(t ) Skl COp(t) + Hl/z(t) Skoalp) (5.14)

As mentioned in Sect. 4.5, if the constitutive law is given by Eq. 4.5.2, the tangent moduli

Livjkl are not symmetric. If the constitutive law is given by Eq. 4.5.4, the tangent moduli

L}gkl are symmetric. The symmetric tangent moduli are computationally much more

efficient.

As an example, the solution is given for the boundary value problem
corresponding to the rubber block fixed on both ends and sheared (Fig. 5.2 and 5.3). The
constitutive equation for tfle elastic stress was given by Eq. 5.5. The unsymmetric form of

Eq. 4.5.2 was used for the viscoelastic stress. The material parameters are given by,

elastic rubbery modulus Ge = 0.32 MPa

number of links between en'ta'nglements No= 75
relaxation time to = 0.25 seconds .
relaxation function Gy(t) = 2 e(t/0.25)
penalty parameter o K = 1000

The undeformed block is shown by dotted line in Fig. 5.2 (a) and is of unit dimensions
(meters). The mesh consisted of 100 4 node bilinear elements . A cyclic shear strain
history (Fig 5.2 (b)) in the form of a triangular pulse is applied to the block. The
maximum shear strain applied is Y= 1. The deformed bearing at y= 1 is shewn in Fig.
5.2 and the average shear stress (V = average Tyy) is shown.in Fig. 5 3 Forty steps were
used to complete a cycle of loading such that it took 10 steps from (t =0, y=0) to (t = 30,
v = 1). The Euclidean norm of the out of balance force vector was used as the
convergence criterion. Second order convergence was achieved as evident by the valﬁes

for the error norm in Table. 1 for a few of the initial steps. The penalty parameter K =



1000 was effective in maintaining the near incompressibility constraint . Most of the
values of the volume ratio were within + 1x10-6 of unity except for a few elements in the .

corners where 0.997 <J < 1.003 (J being the volume ratio).

Table 1.

-Values of the Fuclidean norm of the residual

Step number

Error

1 (y=01t00.1) 6.25430E-01

2.93721E-01
6.41837E-03
3.84168E-03
1.80959E-04
3.08567E-06

7.33610E-01
2.89386E-01
5.86986E-03
3.40927E-03
1.66387E-04
2.78671E-06

2.65322E+00
1.24420E-01
2.00771E-03
3.03412E-04
5.96701E-05

 2.91919E+00
9.88782E-02

1.92582E-03
3.12610E-04
5.79649E-05

10 (y=0.9 to 1)3.14567E+00

7.92877E-02
1.84041E-03
3.16853E-04
5.67332E-05
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Fig. 5.2 (a) Unde

(a)

horizontal displacement

0 6 120
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(b)

formed unit (1m x Im x 1m) block show in dotted line along with

deformed block and mesh. (b) Displacement history function applied to block.
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CONCLUSIONS AND RECOMMENDATIONS

Different physically based constitutive models were examined in this study and
different degrees of success were achieved in qualitatively and quantitatively matching
experimental results. At the very least, valuable experience is gained when it is shown
that the assumptiohs predicating a given model do not provide a realistic representation of
the physical system. It seems that a comprehensive regime of tests on commonly used
rubber solids under highly controlled conditions could be very useful in elucidating the
g_eneralized behavior of the material (assuming there is a generalized behavior).

The scheme used to approximate the orientation spaee integrals in terms of strain
and strain invariants gave good results compared to the exact numerical intégration
solution of the integrals. Application of the scheme to the elasticity models gave very
good approximations up to relatively high strains; especially for the entanglement model.
To a lesser degree, application of the scheme to the force equilibration viscoelasticity
model also gave good results. |

As Was seen in Section 1, the classical theory when ﬁtted for uniaxial data could
not fit the equibiaxial data. The proposed entanglement model provided much better fits
to the experimental data, but as was shqwn in Section 4.6 shows some discrepancy when
plotted using a Mooney plot. Other theories such as hoop and tube models can provide
~ better Mooney plots (Higgs et. al., 1990), since these models are more sophisticated than
the entanglement model used here. Nevertheless, these models don't consider finite
extensible chains. It seems plausible that these models could be modified for finite
extensibility, furthermore the hoop and tube models are based on the familiar average'.
stretch quantity (A) which can be well approximated.

The force equilibration model clearly shows the wrong strain dependence
compared to experimental data for the constant axial stretch rate deformation. It Weuld be

instructive to see if the force equilibration model could predict high strain rate test
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-

results, since it seems that hardening would occur aé opposed to the characteristic
softening (i.€., slight concave down appearance of curves in Fig. 4.6.5, 4.7.i and 4.7.2)
behavior seen at the slow rates. One explanation of the softening could be that chains are
broken during the loading process. Another explanation is that many unattached chains
may exist within the rubber matrix. The latter explanation is the basis of the so.called two
network model considered here. |

The two network model appeared to give géod qualitative results compared to the
uniaxial constant stretch rate experiments. In this model the unattached chains disengage
from the tube of constraints as explained in the Doi and Edwards reptation theory. A
general model that considers effects due to force equilibration, chain retraction, and chain
disengagement of unattached and dangling chains could be useful. The two network
model motivated the empirical model which provided very good fits to the experimental

data.
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APPENDIX A

The principle stresses are found by taking the derivative of the free energy W (Eq.

1.2.5) with respect to principle stretches such that:

2

6,~0,= 9 nﬁ‘w(x) ___(?_dG)d(D} . nffw(x) ?ededd) (A.1)
3 , .

M a

00

Where G; and A; are the ith principle stress and stretch respectively. Now using

AX(©.®) = },f cos O+ }é sin @sin P + lg sin © cos @

and Eq. 1.2.6, the fbllowing derivative is found:

dWO»)

—J—kTL(

(7\,109529) | (A;2)

N

Using A.2 and a similar expression for the A3 derivative in Eq. A.1 gives:’

rn

-1
GfJ:[ L (T)(x cos’@ - k sin @sm (I)) 4

0

no ,
do do (A.3)
7T

such that 63 = 0 and G = nkT. Exploiting symmetry, and making the change of variable
C =co0sO, Eq. A.3 is modified as such:

r/2 1

= 8G/N J J L‘I(T) (A1C? =251 - CFsin’e) dC i (A4)

0

Modifying A.4 for uniaxial tension Az = 1/\/11 gives:
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/2!

_ | R N O S 2 2| o ‘
o= SGﬁJJXL (7—13)(7»1(3 —/X1(1-c Jsin q:)dC d (A.5)

For equibiéxial tension using the coordinate system in Fig. 1.2.4 (b), o, is considered
instead of o1 and A1 = 1/A; such that

xf2 1

| A | |
6,= 8GyN J f % L,‘l(ﬁ) (;écz - %é (1- Cz)sinzd)) dC do (A.6)

Figs 1.2.5 and 1.2.5 are plotted as stress per undeformed area f = ,/A; while Fig. 1.2.6 is
plotted as f = Gy/A; .

Eq. A.5 and A.6 was integrated numeficallylby an adaptive Gauss point
integratidn scheme:' The rectangular domain is discretized into panels each 'contain_ing 36

(6x6) Gauss points. The adaptive scheme is outlined as follows:

1. Discretize the domain (®,C) into 4 panels (1-4) and compute the integrals (I - I4) for
each panel (Fig. 1a)

2. Subdivide the first panel into 4 sub-panels (1.1-1.4) and recompute the integ‘ral for the
domain of panel number 1 (Fig. 1b) such that

M-

S—-
[1=
1

1 L

3.If ’ [ -4 I <€ where € is some desired tolerance then I is used for value of the integral

over the domain of panel 1 and.step 2 is repeated for the panel 2 (Fig. 2a).

4. If the difference is greater than the tolerance €, then panel 1.1 is subdivided into 4 sub-
panels (1.1.1-1.1.4) (Fig. 2b) and checked, such that

4
S —
L1 —i_zl L

and |Il.1 -1, ’ <emust be satisfied or further subdivision of 1.1 is necessary.
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The subdivision process is repeated for all the'panels and sub-panels and their values are

summed to give the integral of the entire domain. An error tolerance 1x10-6 was used to

calculate the integrals throughout this work.

(n/2,0) ' (r2,1)  (m/2,0) - (m2,1)
4 3 4 3
1.41 1.3
1 2 2
1.111.2
(0,0) (0,1)  (0,0) (0,1)
(a) _ (b)

Fig. 1 (a) First 4 pahels of domain. (b) Subdivision of panel 1 into 4 sub-
panels 1.1-1.4

(r/2,0) (m2,1)  (w2,0) (m/2,1)
4 3 4 3
2.4 | 2.3} 1.4 11.3
1 11.4]113 2
2.1 2.2 —— 1.2
(0,0) (0,1)  (0,0) (0,1)
(a) (b)

Fig. 2 (a) Subdivision of panel 2. (b) Subdivision of panel 1.1
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APPENDIX B

Uniaxial Tension

For uniaxial tension and compression Eq. 2.2.9 and 2.2.20 can be solved

analytically. Assuming incompressibility, the following transformation is used:

'y A 0 O cos®  Aj cos® 1
\ -1/2 . R
{ u; } 0 A 0 sin® cos® | = { A1 sin® cos®
u' -1/2 .
? 0 0 A \sin@ sin®/ | A" sin® sin® I (B.1)
From Eq. B.1 the stretch is then found to be:
A=V Uk = \j A2 cos20 + A7 sin2@ (B.2)
and upon integration (Marrucci, 1979), the average stretch is:
- )
1 inh-1 \/ 3.
Ay = % ()J \/ M2 cos20 +A; ! sin20 sin®dO = z?q ( 1+ sinh 71 )
A,13/2 A f }“3_1
(B.3)

For uniaxial loading 67 = 63 = 0. Using Egs. 2.2.20‘ (b) and B.1, the longitudinal stress oy

~ is described by the following relation:

2L T
) 2(._:)
1 'sin sin®

<l> }\-1 COSZG
01 =01 - 1/2(c+ 03) = G\]NO Ll(—== g[ J d® do

7\, 47

3+l 3.1 sinhl )
=§G\/_NO—L'1( OL) )7\1 2(1 4%1 1 sinh }ul 1 (B.4)

VNo 2.1 a3+ 1 w2 31

where (A) is defined by Eq. B.3.



Equibiaxial Tension

Eq. B.3 and B.4 may also be used for equibiaxial tension in the 2-3 plane (i.e. 62
=03, and o1 = 0). Substituting A; = (A2 )2 * into Eqs. B.3, B.4 gives the average stretch

(Eq. B.5) and equibiaxial stress o7 (B.6).

A2 1smhl“MQ1 | B9
( -\/__-_6_1)

(A=

3 Ly oM a6 sty a5
-2 6N L (1%
VN, -1 22,70 +1 }\‘2-3 —\’ )"2-6_1
(B.6)

02=02-01=

Pure Shear

For pure shear Eq. 2.2.9 and 2.2.20 cannot be solved analytically, hence the
numerical quadrature method similar to that described in Appendix A was used. Again

assuming incompressiblity, the following transformation is used:

'y M0 0 cos® A3 cos®
{ u', } =l 0 A O sin® cos® | = | Ay sin® cos®
u' v
’ 0. 1 sin® sin® f \ sin® sin® I (B.7)
From B.7 the stretch is shown to be :
A=V uguy = ‘\/ A2 cos2@+ ).;2 sin2@cos2®+sin2@ sin2d (B.8)

The equation for the average stress is:

* From incompressibility A1A2A3 = A1 (A2)2 = 1 for equibiaxial stretching in the 2-3 plane.

115



116

2T T

A= OJ. OI V A22c0s20+ 42 5in2@cos2d+sin2@sin2d %Q dO do

(B.9)
According to the coordinate system used (Fig. 2.3.1), 61 = 0 for pure shear; therefore,

from Egs. 20 and B.7, the longitudinal stress o1 is described by the following relation:

2T T
2 02 2P - %2 cos2 ;
6y =0y - 01 =GN, L <r}:1> )JOV‘Z sin @Cosf %" cos’® S;r;@d(ad(b
: N (o] .

(B.10)
Eqgs.B.9 and B.10 cannot be solved analytically so the numerical quadrature technique

similar to that described in Appendix A is used.
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APPENDIX C
Proof of Eq. 4.4.2

The following is a proof of Eq 4.4.2 using a sihgle exponential kernel. The proof

can be easily generalized to include a Prony series kernel. _

Lemma 1.

t

f ce(t- t)/tox(r) dt=
oA(t) |

t-At

9 lim (- ety (A(t) - A(t -At)) + e-dVt | eC-At- Wty 7.\.(1) dr|=1

IA(t) At =0 At

Lemma 2.

The stretch A = A(©,®,t) is a function of the Cauchy Green tensor C(t)xr. and the

direction cosines i.e.
A = MO, D) = YMg C(tx ML

therefore

tx 2t

0 sin © _ If(A) | MMy sin @
3Cxt ]I f(A) e dO dd = 5 2 N = doe do

00 00

Using Lemma 1. and Lemma 2., the gradient of the free energy Eq. 4.4.1 is taken to be:

2 t 2

aw" J 1 ' sin ©
= 1 -(t - )/ sin
JE(tk1 ‘2 dC(t)kL 2 f I I °e (t-D/ohm dr 4z 0 dP

oo .

= f f ce-(t - T/toA(1) dr| MKMLsin © 49 4o
4)\’ 41



Which is identical to the viscoelastic stress given by Eq. 4.3.5. with a single term

exponential kernel.

Proof of A> 0

Lemma 3.

t

aa—tjce'(t-T)/toX(‘c) dt|=-

%of ce-(t- TD/tg 7;(1) dt+c 7.»(t)

-0

but E(t)ky, is constant therefore?L(t) =0 and

t t

9 I ce(t- T)/Foj»(r) dt|=- %I ce-(t- Dty i(‘c) dt

ot
By definition
ot % t 2
A=-21 ce-(t- DVt A(r) dt| S @ 4@ do
ot2 4T
oo |\
Therefore using Lemma 3.
2nn t 2

A= f f Lto f ce~(t - Do A(7) d S%E@d(a d® >0 (qed.)

00 -
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APPENDIX D

This Appendix includes the derivation of Eq. 4.5.2 and Eq. 4.5.3. First the

derivation of 4.5.2 is considered.
Proof of Eq. 4.5.2

The definition of the viscoelastic backstress is,

p2. 31 t

Sk (1) = f f f G- @Y 4 | Mk ML gg0d0 (D.1)

dt MO,D)

00 o

Taking the time derivative of the following approximation for the strectch, -

- 1 (L 2 Iy
M©.0) = 1Tif5 + 1 ( 3) @)1 | ®2)
gives,
Y3 d 1/2‘ 3 d (1.-12 '
A o V2 + B v S (112Cgq ) (D.3)

From here on, the differential area SLL@ dO d® is replaced by dQ2 and the double integral
i1

is replace by the integration over Q. Substituting Eq. D.3 into Eq. D.1 gives

t

M
Sk = J MKX CHTe) J Gt - )‘/_ a>1’2d +

Q o

A 2

Q o

J'M_IM J'G(t_ £ ( UZCOP) (D.4)
dr

At this point the time and spacial integrations are decoupled. It remains to find an

approximation of the spacial integrations. Many different methods were tried, the



following method was the most successfull. Since 7\.2,(9,4)) = Mg Ckr, My it is recognized

that oA _ 1 MgMy and therefore:

GCKL 2'7\’

1{ MM, f |
ZJ;_ S dQ_aCKL AdQ (D.5)

Consequently, if the integration on the right hand side of (D.5) is approximated by
invariants, the gradient of that approximation gives the desired result. This time a higher

order approximation than that in Eq. 1 is used for A is used to give better accuracy i.e.

W ( )1/ (kz-%-)+1 (11

) =312
3

a-Lr 6

Substituting Eq. 6 into the spherical integral gives, |

! _ L I_1-1/2 2 "_Il_ L 1_1-3/2 2 _1_12
Lkdﬂ—- 075 +1 (3) L(X(®’¢)_3)dg_+8 (3) fﬂ@(@,d)) 17 40

D.7)

_USing the integral identities give by Egs. 1.16 - 1.19 gives the following approximation,,

V3
[ A dQ =15 GL2+ —55 13,2 ) | (D.8)
Q

Taking the derivatives of the strain invariants with respect to Greens tensor gives

V3

¥2Cg  (D.9)

- V3 3 1
]M_KMLdQ z%(llm 5152/2)5KL_

Q.
The second spacial integration in Eq. D.4 is approximated in the same fashion. It is

recognized that,

W2 [

0 0 3 Mg M MM
A dQ = | EEKLYOYPIQ D.10
oCkL aCOPI f N (D19

a Q
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Using the same Taylor expansion method used to get (D.6) the following approximation

is given for A3

x3=(1

: )3/2 % (_I_) 172 (xz ) 1?1) +% (L_) -172 (}\,2 ) 1?1)2 (D.11)

3 3

Substitution of (D.11) into the integral and using the integral identities given by Eqs. 1.42

- 1.44 gives the following approximation,

3 _13(LP2 1 (L 2
[[# e s .12

Q

Takmg the first and second derivatives of (D.12) with respect to CkL glves

f Mg M MoM; M;:MOMPdQ [( % (I ) 1/2. - —9-16 (%—)-5/2 Iz) dopOkL. +

Q

A (I ) - (SOPCKL+ COPSKL) + (13 ) 2 (SQKSPL + 81:[(80]_,)] (D 13)

45 \3

Now results from (D.9) and (D.13) can be substituted into (D.4) to give,

b0 = [ﬂ(l 12 -%I—IL)SKL-ng’zCKL] f Gt-v 4 Par +

[(ﬁ (I—l)-m - L(%1)-5/2 )5115KL +Z1§ (g) 3/2(51JCKL+ Cudk) +

t

L (I—) " (5IK51L+ 5JK51L)] f G(t-1) 32C éit( 1(2 Cy) du

-00

(D.14)
It is easily seen that,

t

] Gt - t)—(I“z)d'c= Sy j G(t-1) %(11”2 Cy)dt  (D.15)

00
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-

Substituting (D.15) into (D.14), combining like terms and making use of the symmetry of

Cy the following simplification of (D.14) results:

12 "
Sia(t) = 5| (14 - 9 )5KL6u {3Cu- —%Cmésmaul [ G- L% ey ar

(D.16)

This is identical to Eq. 4.5.2. As méntioned, the derivative of (D.16) with respect to the
strain gives a nonsymmetric tangent stiffness matrix. If the approximations given in Eq.
D6 and Eq D.11 where one order lower (i.e. the same order as Eq. D.2), the cxpreésion
for the stress would be the same as the symmetric form given by Eq. 4.5.4. It is the higher
order-apprdximatiqns made in Eqs. D.6 and D.11 that give the additional accuracy but

sacrifice the symmetry.
Proof of Eq. 4.5.2

The proof is given for a single exponential kernel function but is easily
generalized for a Prony series. The derivation of Eq. of 4.5.3 starts from the definition of

the scalar potential function (cf. Eq. 4.4.1)

2nm t 2
: sin © '
p'= % J j J cer-DMoj 4 —-d0do (D.17)

00 ~
Now substituting D.3 into D.17 gives,

2t n

\Pvz%jJ' J e (t-Dht, (~/— d 1"+ x/_ d (11’1/2CKL))<1‘E N
T

sin ©
Jce-(t-n)/to (g_d_al)l/z «/;MNMO_( e )) dn do dd
dn ’ dn 4

B

(D.18)



where the first time integration uses the dummy variable T and the second time

integration uses the dummy variable 1. Now expanding terms and seperating the terms

which are integrals over the spherical coordinates gives,

t

t

gV S| | cet-Dte 4 @) dr x| | ce Do d @2an | +
24 dt . dn

t

dt

<o

t

o

2r .
sin @ ‘
MMy —— d do +

00

2¢ J ce'(t'T)/t°i(Il-U2CKL) dt | x J Ce'(t-n)/t°§(ll'1/2CN0) dn |x
. |

0

sin

(D.19)
Now the following ihtegral identities are used,
It ] '
MM Sin(N)d ds _Ls D.20
kML = Odd= 3 SKL (D.20)
00
nn .
sin © 1 ' .
MM MyMo —— d0 4o = 5(8xOv0 * SxaBro * BxoBin) (D.21)

00
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Substitutioﬁ of Egs. D.20 and D.21 into D.19 and performing the inner products gives the
. desired result (cf. Eq. 4.5.3),

2

v_3c l (t-ot, 42
¥ ~20 JC OdT(Il) d’C

o0

<] .@t-t-mn, df;-n dioan
70 JC n OdT(Il CKL) dn(Il CKL)d"CdT] (D22)

o0



